

Collaboration Policy - Read Carefully

For this assignment, you make work either alone or with a partner of your choice.

Regardless of whether you work alone or with a partner, you are encouraged to discuss this
assignment with other students in the class and ask and provide help in useful ways. You may
consult any outside resources you wish including books, papers, web sites and people. If you use
resources other than the class materials, indicate what you used along with your answer.

Purpose

� Understand how language interpreters work
� Understand the meta-circular evaluator
� Gain experience with Python
� Learn how changing the evaluation rules changes programming

Read Chapter 12 of the course book. Become familiar with the
Python Guide as a reference.

Download: Download charme.py to your machine and save it
into your home directory J:\cs150\ps7. This file contains a

Python implementation of an interpreter for the Scheme-like
language Charme. The implementation closely matches the
description in Chapter 12.

For most of the questions in this assignment, you will modify charme.py. When you
turn in your answers, please just turn in the changes you have made for each
question, in a clearly marked way. You should not turn in print-outs of provided code
that you did not modify.

Background

Languages are powerful tools for thinking. One way to solve problems is to think of a language in
which a solution to the problem can be easily expressed, and then to implement that language.
This is the "great Hop forward" that Grace Hopper made in the 1950s: we can produce programs
that implement languages. The input to the program is an expression specification in some
language. If the program is an interpreter, the result is the value of that expression.

In this problem set, we provide a working interpreter for the Charme language, which is
approximately a subset of Scheme. The interpreter implements the Scheme evaluation rules with
state (from Chapter 9). Your assignment involves understanding the interpreter and making some
additions and changes to it. If you are successful, you will produce an interpreter for the language
Mesmerize in which the original Fibonacci procedure can be applied to 60 to produce the correct
result in a reasonable amount of time.

University of Virginia, Department of Computer Science
cs150: Computer Science — Spring 2007

Problem Set 7: Charming Snakes and Mesmerizing Memoizers
Out: 26 March

Due: Friday, 6 April

Page 1 of 4CS150: Problem Set 7: Charming Snakes

3/26/2007

Getting Started

First, try running the Charme interpreter. We recommend using, IDLE, the Python interpreter and
development environment provided in the ITC lab machines. IDLE provides an editor for Python
code and an interpreter somewhat similar in style to DrScheme. After you have extracted
charme.py from the ps7.zip file, you can open it in IDLE by right-clicking on the file and selecting
"Edit with IDLE" (the second option listed). This opens both a Python Shell (analagous to the
interactions buffer) and the editor containing charme.py in separate windows.

Try evaluating some Python statments in the interpreter window. To get familiar with Python, try
to define the intsto procedure that takes a positive integer as its input and produces a list of the

integers from 1 up to the input value. For example, intsto(5) should evaluate to [1, 2, 3, 4,

5]. If you get stuck, follow this link for one definition.

In the charme.py window, select Run | Run Module (F5) to load the definitions into the

intepreter. You can try some evaluations using meval directly. First, evaluate

initializeGlobalEnvironment()

to initialize the global environment. It is stored in the global variable globalEnvironment. The

meval procedure takes two parameters. The first is a structured list specifying a Charme

expression (the result of parse); the second is the environment in which that expression should be

evaluated. For example,
>>> meval("23", globalEnvironment)

23

>>> meval(['+', '1', '2', ['*', '3', '4']], globalEnvironment)

15

This is a painful way to evaluate expressions, since the input needs to be a structured list. The
parse procedure takes a string representing one or more Charme expressions and produces as

output a list containing each input expression as a structured list. For example,
>>> parse("23")

['23']

>>> parse("(+ 1 2 (* 3 4))")

[['+', '1', '2', ['*', '3', '4']]]

>>> parse(""(define square (lambda (x) (* x x)))")

[['define', 'square', ['lambda', ['x'], ['*', 'x', 'x']]]]

The evalLoop() procedure combines parse and meval to provide a convenient interpreter for

Charme. Try evaluating evalLoop() and evaluating some Charme expressions.

1. Define a factorial procedure in Charme. (Note that Charme does not provide the if
expression, so the standard Scheme definition will not work.)

Adding Primitives

The set of primitives provided by our Charme interpreter is sufficient (that is, enough to express
every computation), but very impovished (not enough to express every computation in a
convenient way).

2. Extend the Charme interpreter by adding a primitive procedure <= to the global

environment. You will need to define a procedure that implements the primitive, and
modify initializeGlobalEnvironment to install your primitive.

Page 2 of 4CS150: Problem Set 7: Charming Snakes

3/26/2007

Our Charme interpreter does not provide any primitives for lists. As we saw in Chapter 5, it is
possible to define cons, car and cdr using only the language already defined by Charme.

However, it would be more convenient if some primitives for manipulating cons cells and lists are
provided.

3. Extend the Charme interpreter by adding primitive procedures cons, car and cdr

that behave similarly to the primitive Scheme procedures.

One suggestion for implementing these primitives is to start by defining a class that represents a
cons cell. For example, you could define a Cons class that has a constructor (__init__) that takes

two inputs (the first and second parts of the pair), and provides methods for getFirst and

getSecond that retrieve the respective parts of the pair.

You may also want to change the evalLoop procedure to display cons cells similarly to how they

are displayed in Scheme. You could do this by adding a toString method to your Cons class, and

adding a clause starting with elif isinstance(res, Cons): to the evalLoop.

Once your new primitives are installed, you should get the following interactions in the evalLoop

():
Charme> (cons 1 2)

(1 . 2)

Charme> (car (cons 1 2))

1

Charme> (car (cdr (cons 1 2)))

2

4. Extend the Charme interpreter by defining the null and null? primitives.

You could use Python's None value to represent null.

5. Extend the Charme interpreter by defining the list primitive prodcedure. Like the

Scheme list primitive procedure, it should take any number of operands and produce

as output a list containing each operand as an element in order.

Once your new primitives are installed, you should get the following interactions in the evalLoop

():
Charme> (define a (list 1 2 3 4))

Charme> (car a)

1

Charme> (null? a)

False

Charme> (cdr (cdr a))

(3 4)

It is acceptable if your list does not print out quite like this, but better if you can make it print out correctly.

Charme> (null? (list))

True

Special Forms

6. Extend the Charme interpreter to support the if expression special form, with the

same meaning as the Scheme if expression.

Page 3 of 4CS150: Problem Set 7: Charming Snakes

3/26/2007

After adding if to your Charme interpreter, you should get the following interactions (note: we

recommend testing it with simpler tests before trying this):
Charme> (define fibo (lambda (n) (if (= n 1) 1 (if (= n 2) 1 (+ (fibo (- n 1))

(fibo (- n 2)))))))

Charme> (fibo 5)

5/p>

Memoizing

Memoizing is a technique for improving efficiency by storing and reusing the results of previous
procedure applications. If a procedure has no side effects and uses no global variables, everytime
it is evaluated on the same operands it produces the same result.

To implement memoizing, we need to save the results of all procedure applications in a table.
When a procedure application is evaluated, first, we lookup the application in the table to see if it
has already been computed. If there is a known value, that is the result of the evaluation and no
further computation need be done. If there is not, then the procedure application is evaluated, the
result is stored in the table, and the result is returned as the value.

7. Modify the Charme interpreter to support memoizing for all procedure applications.
(Hint: the Python dictionary datatype will be very useful for this.)

Once you have modified the interpreter, you should be able to evaluate (fibo 60) without

changing the definition of fibo above. By changing the meaning of the application evaluation

rule, a procedure that previously had running time exponential in the value of the input, now has
running time that is linear in the value of the input!

Page 4 of 4CS150: Problem Set 7: Charming Snakes

3/26/2007

