
Chapter 12

Computability

Gödel’s paper has reached me at last. I am very suspicious of it now but will have to swot up

the Zermelo-van Neumann system a bit before I can put objections down in black & white.

Alan Turing, letter to Max Newman, 1940

Hopefully by this point you are comfortable with programs and how they are

evaluated, and should feel like with enough time and effort you would write a

program to do just about anything. In this chapter, we consider the profound

question of what problems can and cannot be solved by computing: are there

problems that cannot be solved by any algorithm?

We will present an informal answer to this question here, and develop a more

formal answer in Chapter ??. Before getting to the question of computability, we

introduce a similar question for declarative knowledge: are there true statements

that cannot be proven by any proof?

12.1 Mechanizing Reasoning

An axiomatic system is a formal system consisting of a set of axioms and a set

of inference rules. The goal of an axiomatic system is to codify knowledge in

some domain, so that all true statements can be derived starting from the axioms

and following the inference rules. A complete axiomatic system would be able to

12-1



12-2 CHAPTER 12. COMPUTABILITY

derive all true statements by starting from the axioms and following the inference

rules. A consistent axiomatic system is one that can never derive a false statement

by starting from the axioms and following the inference rules.

Humans have been attempting to develop axiomatic systems that codify logic for

thousands of years. An early notable attempt was Aristotles Organon (in approx-

imately 350BC). Aristotle developed syllogisms, rules of inference that codify

logical deductions. For example:

Every A is a P.

X is an A.

X is a P.

The statements above the line are the premises, and the statement under the line is

the conclusion. The variables A, P , and X can be bound to any value. If the first

two statements are true, then the inference rule states that the third statement must

also be true. For example, binding A to human, P to mortal, and X to Gödel, we

get:

Every human is mortal.

Gödel is a human.

Gödel is mortal.

Attempts to mechanize reasoning culminated in 1913 with the completion of Al-

fred North Whitehead and Bertrand Russells Principia Mathematica, three vol-

umes comprising over 2000 pages that attempted to mechanize mathematical rea-

soning. Whitehead and Russell attempted to derive all true mathematical state-

ments about numbers and sets starting from a set of axioms and formal inference

rules.

12.1.1 Russell’s Paradox

In doing this, they encountered several challenges, the most famous of which is

now known as Russell’s paradox. Suppose S is defined as the set containing all

sets that do not contain themselves as members. For example, the set of all prime

numbers does not contain itself as a member (since all its members are numbers),



12.1. MECHANIZING REASONING 12-3

so it is a member of S. On the other hand, the set of all entities that are not prime

numbers is a member of S. This set contains all sets, since a set is not a prime

number, so it must contain itself. Is the set S a member of S?

There are two possible answers to consider: “yes” and “no”:

• Yes: suppose S is a member of S. Then, the set S contains itself. But,

we defined the set S as the set of all sets that do not contain themselves as

member. Hence, S cannot be a member of itself, and the statement that S is

a member of S must be false.

• No: suppose S is not a member of S. Then, the set S does not contain itself.

But, we defined the set S as the set of all sets that do not contain themselves

as a member. So, if S is not a member of S, it does not contain itself, and it

must be a member of set S. This is a contradiction, so the statement that S

is not a member of S must be false.

This is a paradox! The “yes” answer and the “no” answer both make no sense.

Whitehead and Russell attempted to resolve this paradox by constructing their

system to disallow the original definition. Their solution was to introduce types.

Each set has an associated type, and a set can only contain members whose type

is below the set type. A type zero set is defined as a set that contains only objects

(that is, it cannot contain any sets as members). A type one set is a set that contain-

ing only objects and type zero sets. A type n set is a set that contains only objects

and sets of type n−1 and below. With this definition, the paradox is resolved: the

definition of S must now define S as a set of type k set containing all sets of type

k − 1 and below that do not contain themselves as members. Since S is a type k

set, it cannot contain itself, since it cannot contain any type k sets.

Introducing types eliminates the set membership paradox (but reduces the expres-

siveness of the system), but it does not eliminate all self-referential paradoxes.

For example, consider this paradox named for the Cretan philosopher Epimenides

who was said to have said “All Cretans are liars.”. If the statement is true, than

Epimenides, a Cretan, is not a liar and the statement that all Cretans are liars is

false. Another version is the self-referential sentence:

This statement is false.



12-4 CHAPTER 12. COMPUTABILITY

If the statement is true, then it is true that the statement is false (a contradiction).

If the statement is false, then it is a true statement (also a contradiction).

The type restriction eliminates the paradox regarding set self-inclusion, but it can-

not eliminate all self-reference paradoxes.

12.1.2 Gödel’s Incompleteness Theorem

Kurt Gödel was born in Brno in 1906, and at the age of 25 published a paper,

On Formally Undecidable Propositions of Principia Mathematica and Related

Systems that established the impossibility of completely mechanizing reasoning.

Gödel proved that the axiomatic system in Principia Mathematica could not be

complete and consistent, but more generally that no powerful axiomatic system

could be both complete and consistent. He proved that no matter what this ax-

iomatic system is, if it is powerful enough to express certain things, it must also

be the case that there exist statements which cannot be proven either true or false

in the system. Gödel’s proof showed this by construction: to prove that Principia

Mathematica contains statements which cannot be proven either true or false, it is

enough to find one such statement. Gödel’s statement is:

GPM : Statement GPM does not have any proof in the system of

Principia Mathematica.

If statement GPM is provable in the system, then the system is inconsistent: it

can be used to prove a statement that is not true. If GPM is proven, then it means

GPM does have a proof, but GPM stated that GPM has no proof. On the other

hand, if GPM is not provable in the system, then the system is incomplete. Since

GPM cannot be proven in the system, GPM is a true statement. But, the premise

is that GPM is not provable. So, we have a true statement that is not provable in

the system.

The proof generalizes to any axiomatic system, powerful enough to express a

corresponding statement G:

G: Statement G does not have any proof in the system.

For the proof to be valid, it is necessary to show that statement G can be expressed

formally in the system. To express G formally, we need to consider what it means



12.2. COMPUTABILITY 12-5

for a statement to not have any proof in the system. A proof of the statement G

is a sequence of steps, T0, T1, T2, . . ., TN . Each step is the set of all statements

that have been proven true so far. Initially, T0 is the set of axioms in the system.

To be a proof of G, TN must contain G. To be a valid proof, each step should be

producible from the previous step by applying one of the inference rules to state-

ments from the previous step. So, to express statement G, an axiomatic system

needs to be powerful enough to express the notion that a valid proof does not ex-

ist. Gödel showed that such a statement could be constructed using the Principia

Mathematica system, and using any system powerful enough to be able to express

interesting properties. That is, in order for an axiomatic system to be complete

and consistent, it must be so weak that it is not possible to express “this statement

has no proof” in the system.

12.2 Computability

Gödel established that no interesting and consistent axiomatic system is capable

of proving all true statements in the system. Now we consider the analogous

question for computing: are there problems for which no algorithm exists?

Recall the definitions of problem, procedure, and algorithm from Chapter 4. A

problem is a description of an input and a desired output. A procedure is a spec-

ification of a series of actions. An algorithm is a procedure that is guaranteed to

always terminate. A procedure solves a problem if that procedure produces a cor-

rect output for every possible input. If that procedure always terminates, it is an

algorithm. So, the question can be stated as: is there a problem P such that there

exists no procedure that produces the correct output for problem P for all inputs

in a finite amount of time.

A problem is computable (the term decidable is used to mean the same thing) if

there exists an algorithm that solves the problem. It is important to remember that

in order for an algorithm to be a solution for a problem P , it must always terminate

(otherwise it is not an algorithm) and must always produce the correct output for

all possible inputs to P . If no such algorithm exists, the problem is uncomputable

(also known as undecidable).



12-6 CHAPTER 12. COMPUTABILITY

12.2.1 The Halting Problem

Alan Turing proved that there exist uncomputable problems. Similarly to Gödel’s

proof, the way to show that uncomputable problems exist is to find one the way

Gödel show unprovable true statements exist by finding an unprovable true state-

ment. The problem Turing found is the Halting Problem1:

Halting Problem Input: A specification of a procedure.

Output: If evaluating an application of the

specified procedure would ever

finish, output true. Otherwise,

output false.

Suppose we had a procedure halts? that solves the Halting Problem. The

specification of the procedure could be a quoted Scheme expression. Note that

we cannot use the expression unquoted since that would mean the expression is

evaluated before halts? is applied; if this were done, the halts? procedure

would never be applied if the input expression would not halt.

The halts? procedure should work like this:

> (halts? ’(lambda () (+ 2 3)))

#t

> (define (factorial n)

(if (= n 0) 1

(* n (factorial (- n 1)))))

> (halts?

’(lambda () (factorial 10)))

#t

> (halts?

’(lambda () (factorial -1)))

#f

The evaluation would not terminate since the initial value of n

is below the base case, and each recursive application

decreases the value of n.
> (define (fibo n)

1This problem is a variation on Turing’s original problem, which assumed a procedure that

takes one input. Of course, Turing did not define the problem using a Scheme expression since

Scheme had not yet been invented when Turing proved the Halting Problem was uncomputable in

1936.



12.2. COMPUTABILITY 12-7

(if (or (= n 1) (= n 2)) 1}

(+ (fibo (- n 1))

(fibo (- n 2)))))

> (halts? ’(lambda () (fibo 60)))

#t

Note that it is not possible to implement halts? by evaluating the expression

and outputting #t if it terminates. The problem is it is not clear when to give up

and output #f. For the final example above, the evaluation of (fibo 60) would

never actually finish because it takes too many steps. However, it would finish

eventually in a finite number of steps, so the output of halts? should be true.

This is not enough to prove that halts? is uncomputable. It just shows that one

particular way of implementing halts? would not work. To show that halts?

is uncomputable, we need to show that there is no possible way of implementing

halts? that would produce the correct output for all inputs in a finite amount of

time.

One way to prove that no halts? procedure could work correctly for all inputs

is to find one input for which it could not possible work correctly. Consider this

input procedure:

(define (paradox)

(if (halts? ’paradox)

(loop-forever)

#t))

where the procedure loop-forever is defined as:

(define (loop-forever) (loop-forever)

The body of the paradox procedure is an if-expression. The predicate expres-

sion is (halts? ’paradox), so if an application of the paradox proce-

dure would halt it evaluates to true. If the predicate expression evaluates to

true, the consequence expression, (loop-forever), is evaluated. This ap-

plies the loop-forever procedure, whose body expression is an application of

loop-forever. Evaluating this never terminates since it is a recursive defini-

tion with no base case. Thus, if the predicate evaluates to true, the evaluation of an



12-8 CHAPTER 12. COMPUTABILITY

application of paradox never halts. But, this means the result of the (halts?

’paradox) predicate was incorrect. Hence, it is not sensible for (halts?

’paradox) to evaluate to a true value, since this would cause the application of

paradox to never terminate.

The other option is that the predicate expression evaluates to a false value. If this

is the case, the alternate expression is evaluated. It is the primitive expression

#t which evaluates to a true value. The evaluation of paradox terminates after

the if-expression is evaluated. But, this option assumed the predicate (halts?

’paradox) evaluated to a false value. This means an evaluation of paradox

does not terminate. Hence, it is not sensible for (halts? ’paradox) to

evaluate to a false value, since this would cause the application of paradox to

terminate.

So, (halts? ’paradox) cannot evaluate to a true value, and it cannot eval-

uate to a false value. There are no other options! The only sensible thing halts?

could do for this input is to not produce a value. That means there is no way to

define an algorithm that solves the Halting Problem. Any procedure we attempt

to define to implement halts? must sometimes either produce the wrong result

or fail to produce a result at all (that is, run forever without producing a result).

Thus, the Halting Problem is uncomputable.

There is one missing step in our proof: we argued that because paradox does

not make sense, something in the definition of paradoxmust not exist, and iden-

tified halts? as the component that does not exist. This assumes that everything

else we used to define paradox does exist. This seems reasonable enough — we

have been using everything else in it already (an if-expression, a quote expres-

sion, applications, and the primitive #t) and they seem to exist. But, perhaps the

reason paradox leads to a contradiction is because #t does not really exist. Al-

though we have been using it and it seems to always work fine, we have no proof

that evaluating #t always terminates. Overcoming this weakness in our proof re-

quires a more formal model of computing. In fact, Turing defined such a model

to construct his proof. (Recall this was done in 1936, before anything resembling

what we think of as a computer today existed.) We will examine Turing’s model

later in Chapter ??.



12.2. COMPUTABILITY 12-9

12.2.2 Computability Proofs

Given a problem description, how do we decide if that problem is computable?

We can show that a problem is computable by describing a procedure and proving

that the procedure always terminates and always produces the correct answer. It

is enough to provide a convincing argument that such a procedure exists; finding

the actual procedure is not necessary (but often helps to make the argument more

convincing).

To show that a problem is not computable, we need to show that no algorithm

exists that solves the problem. Since there are an infinite number of possible

procedures, we cannot just list all possible procedures and show why each one

does not solve the problem. Instead, we need to construct and argument showing

that if there were such an algorithm it would lead to a contradiction.

The core of our argument is based on knowing the Halting Problem is uncom-

putable. If a solution to some new problem P could be used to solve the Halting

Problem, then we know that P is also uncomputable. That is, for a given problem

P , no algorithm exists that can solve P since if such an algorithm exists it could

be used to also solve the Halting Problem which we already know is impossible.

The proof technique where we show that a solution for some problem P can be

used to solve a different problem Q is known as a reduction. A problem Q is

reducible to a problem P if a solution to P could be used to solve Q. This means

that problem Q is no harder than problem P , since a solution to problem Q leads

directly to a solution to problem P .

Example 12.1: Prints-Three Problem. Consider the problem of determining

if an application of a procedure would ever print 3:

Prints-Three Input: A specification of a procedure.

Output: If evaluating an application of the

specified procedure would ever

print 3, output true. Otherwise,

output false.

We show the Prints-Three Problem is uncomputable by showing that it is as hard

as the Halting Problem, which we already know is uncomputable.

Suppose we had a procedure prints-three? that solves the Prints-Three



12-10 CHAPTER 12. COMPUTABILITY

Problem. Then, we could define halts? as:

(define (halts? proc)

(prints-three?

’(lambda ()

(begin

(apply-procedure proc)

(print "3")))))

where apply-procedure is a procedure that takes a procedure specification

and applies the specified procedure to no arguments. We need this since the input

to halts? must be quoted, so using the standard procedure application expres-

sion would not work. For now, we will assume such a procedure exists.2

The prints-three? application will evaluate to #t if the application of proc

would halt, since that means the second expression in the begin expression would

be evaluated and that expression prints ”3”. On the other hand, if the application

of proc would not halt, the second expression in the begin expression would

never be evaluated. As long as the procedure never prints ”3”, the application

of prints-three? should evaluate to #f. Hence, the output would correctly

solve the Halting Problem.

The one complexity is the input procedure might print ”3” itself. We can avoid

this problem by transforming the procedure in a way that it would never print ”3”

itself, without otherwise altering its halting or non-halting behavior. One way to

do this would be to replace all the places where the print procedure appears

inside proc with a new do-not-print procedure that does nothing. So, if we

had a procedure replace-prints that does this, we could define halts? as:

(define (halts? proc)

(prints-three?

’(lambda ()

(begin

(apply-procedure (replace-prints proc))

(print "3")))))

2In fact, the built-in procedure eval does exactly what we need. It takes a quoted Scheme

expression and produces the value that expression would evaluate to. In the following chapter we

will see how to define an eval procedure.



12.2. COMPUTABILITY 12-11

If there exists a prints-three? procedure that correctly solves the Prints-

Three Problem — that is, it always terminates and always produces the correct

true or false value indicating if the input procedure specification would ever print

”3” — then, we could also define a halts? procedure that solves the Halting

Problem. But, we know that the Halting Problem is uncomputable. Hence, the

prints-three? procedure we used to define halts? cannot exist, and the

Prints-Three Problem must also be uncomputable.

The Halting Problem and Prints-Three Problem are uncomputable, but do seem to

be obviously important problems. It is useful to know if a procedure application

will terminate in a reasonable amount of time, but the Halting Problem does not

answer that question. It concerns the question of whether the procedure applica-

tion will terminate in any finite amount of time, no matter how long it is. Next,

we consider a problem that it would be very useful to have a solution for it one

existed.

Example 12.2: Is-Virus Problem. A virus is a program that infects other pro-

grams. A virus spreads by copying its own code into the code of other programs,

so when those programs are executed the virus will execute. In this manner, the

virus spreads to infect more and more programs. A typical virus also includes

a malicious payload so when it executes in addition to infecting other programs

it also performs some damaging (corrupting data files) or annoying (popping up

messages) behavior. The Is-Virus Problem is to determine if a procedure specifi-

cation contains a virus:

Is-Virus Input: A specification of a procedure.

Output: If the procedure contains a virus (a

code fragment that will infect

other files) output true. Otherwise,

output false.

We can demonstrate the Is-Virus Problem is uncomputable using a similar strategy

to the one we used for the Prints-Three Problem. We show how to define halts?

using an is-virus? procedure. Since we know halts? is uncomputable, this

shows there is no is-virus? algorithm.

Assume infect-files is a procedure that infects files, so the result of evalu-

ating (is-virus? ’infect-files) is #t. Then, we can define halts?

as:



12-12 CHAPTER 12. COMPUTABILITY

(define (halts? proc)

(is-virus?

’(lambda ()

(begin

(apply-procedure

(remove-infecting-behavior proc))

(infect-files)))))

The remove-infecting-behavior procedure is analogous to how we re-

moved possible occurances of printing ”3” using replace-prints in the pre-

vious example. We need to ensure that the original procedure has no file-infecting

behavior that could lead to a true result even when the procedure application

does not halt. Defining remove-infecting-behavior is a bit trickier than

replace-prints, and we would have to be careful to define it in a way that

does not change the halting behavior of the procedure. But, it could be done. We

would need to replace expressions that write to files (that is, possible infecting

behaviors) with expressions that do something else.

Virus scanners such as Symantec’s Norton AntiVirus attempt to solve the Is-Virus

Problem, but its uncomputability means they are doomed to always fail. Virus

scanners detect known viruses by scanning files for strings that match signatures

in a database of known viruses. As long as the signature database is frequently

updated they may be able to detect currently spreading viruses, but this approach

cannot detect a new virus that will not match the signature of a previously known

virus. Sophisticated virus scanners employ more advanced techniques than signa-

ture scanning to attempt to detect complex viruses such as metamorphic viruses

that alter their own code as they propagate to avoid detection. But, because the

general Is-Virus Problem is uncomputable, we know that it is impossible to cre-

ate a program that always terminates and that always correctly identifies an input

procedure specification as either a virus or non-virus.

Exercise 12.1. Is the Launches-Missiles Problem described below computable?

Provide a convincing argument why it is or why it is not computable.

Launches-Missiles Input: A specification of a procedure.

Output: If an application of the procedure

would lead to the missiles being

launched, outputs true. Otherwise,

outputs false.



12.2. COMPUTABILITY 12-13

You may assume that the only thing that causes the missiles to be launched is an

application of the launch-missiles procedure. ♦

Exercise 12.2. Is the Same-Result Problem described below computable? Provide

a convincing argument why it is or why it is not computable.

Same-Result Input: Specifications of two procedures,

P and Q.

Output: If an application of P terminates

and produces the same value as

applying Q, outputs true. If an

application of P does not

terminate, and an application of Q

also does not terminate, outputs

true. Otherwise, outputs false.

♦

Exercise 12.3. Is the Check-Proof Problem described below computable? Provide

a convincing argument why it is or why it is not computable.

Check-Proof Input: A specification of an axiomatic

system, a statement (the theorem),

and a proof (a sequence of steps,

each identifying the axiom that is

applied).

Output: Outputs true is the proof is a valid

proof of the theorem in the system,

or false if it is not a valid proof.

♦

Exercise 12.4. Is the Find-Finite-Proof Problem described below computable?

Provide a convincing argument why it is or why it is not computable.



12-14 CHAPTER 12. COMPUTABILITY

Find-Finite-Proof Input: A specification of an axiomatic

system, a statement (the theorem),

and a maximum number of steps

(max-steps).

Output: If there is a proof in the axiomatic

system of the theorem that uses

max-steps or fewer steps, outputs

true. Otherwise, outputs false.

♦

I am rather puzzled why you draw this distinction between proof finders and proof checkers.

It seems to me rather unimportant as one can always get a proof finder from a proof checker,

and the converse is almost true: the converse failse if for instance one allows the proof finder

to go through a proof in the ordinary way, and then, rejecting the steps, to write down the

final formula as a ’proof’ of itself. One can easily think up suitable restrictions on the idea of

proof which will make this converse true and which agree well with our ideas of what a proof

should be like.

I am afraid this may be more confusing to you than enlightening. If so I will try again.

Alan Turing, letter to Max Newman, 1940

Exercise 12.5.(??) Is the Find-Proof Problem described below computable? Pro-

vide a convincing argument why it is or why it is not computable.

Find-Proof Input: A specification of an axiomatic

system, and a statement (the

theorem).

Output: If there is a proof in the axiomatic

system of the theorem, outputs

true. Otherwise, outputs false.

♦

12.3 Summary

Although today’s computers can do amazing things, many of which could not even

be imagined twenty years ago, there are some problems that cannot be solved by



12.3. SUMMARY 12-15

computing. The Halting Problem is the most famous example: it is impossible

to define a procedure that always terminates and correctly determines if an appli-

cation of the procedure specified by the input would terminate. Once we know

the Halting Problem is uncomputable, we can show that other problems are also

uncomputable by illustrating how a solution to the other problem could be used to

solve the Halting Problem, which we know to be impossible.

Uncomputable problems often come up in practice. For example, identifying

viruses, analyzing program paths, and constructing proofs, are all uncomputable

problems. Just because a problem is uncomputable does not mean we cannot pro-

duce useful programs that address the problem. These programs provide approx-

imate solutions — they produce the correct results on many inputs, but on some

inputs either do not produce any result, or produce an incorrect result. Approxi-

mate solutions are often useful in practice, however, even if they are not correct

solutions to the problem.


