
Chapter 14

Types

The first principle was security... A consequence of this principle is that every occurrence

of every subscript of every subscripted variable was on every occasion checked at run time

against both the upper and the lower declared bounds of the array. Many years later we asked

our customers whether they wished us to provide an option to switch off these checks in the

interests of efficiency on production runs. Unanimously, they urged us not tothey already knew

how frequently subscript errors occur on production runs where failure to detect them could

be disastrous. I note with fear and horror that even in 1980, language designers and users

have not learned this lesson. In any respectable branch of engineering, failure to observe

such elementary precautions would have long been against the law.

Tony Hoare, describing Elliott Brothers’ Algol 60 implementation in The Emperor’s Old

Clothes, 1980 Turing Award Speech

The previous chapter illustrated how we can define a language with greater ex-

pressiveness by changing one of the evaluation rules. In this chapter, we consider

changing our Charme language in a way that does not increase its expressive-

ness, but in fact reduces it. Reducing expressiveness may seem undesirable, but in

fact, much of the effort in modern language design seeks to reduce language ex-

pressiveness with the goal of preventing programmers from expressing programs

that will crash or produce unexpected results when they are executed. This is

especially important when software is used to control a physical device whose

correct and continued function is essential to safety. Nuclear power plants, anti-

lock brakes, and aircraft avionics are examples of software where it is much better

to prevent a programmer from expressing something that may not mean what the

programmer intends than to allow maximum expressiveness.

14-1

14-2 CHAPTER 14. TYPES

14.1 Types

A type defines a possibly infinite set of values and the operations that can be

performed on them. For example, number is a type. We can perform addition,

multiplication, and comparisons on values of type number. In Scheme, the prim-

itive procedures are defined to take certain types of values as their inputs. For

example, the primitive procedure + takes zero or more numbers as inputs, and the

primitive procedure car takes a pair (constructed using cons) as its one input.

We have used several different types in our Scheme programs so far including

numbers (including integer, rational, and floating point numbers), Booleans (#t

and #f), pairs (the result of a cons), and strings (sequences of characters en-

closed in quotes). Except for Booleans which has only two values, all of the other

types have infinitely many possible values (of course, the number of them that

could be represented in any finite computer is limited). In addition to the primi-

tive types, we can construct new types. A procedure type is defined by the number

and types of the inputs, and the type of the output. We describe procedure types

using an arrow (->). The input types are listed on the left side of the arrow, and

the output type is shown on the right side of the arrow. For example:

• The primitive procedure + has type (Number Number) -> Number.

It takes two numbers as inputs, and produces a number as output.1

• The primitive procedure < has type (Number Number) -> Boolean.

It takes two numbers as inputs, and produces a Boolean as output.

• The max procedure (lambda (a b) (if (> a b) a b)) has type

(Number Number) -> Number.
There’s no business like

show business, but there

are several businesses

like accounting.
David Letterman

In Scheme (and in Charme), types are latent. This means they are not explicitly

denoted in the program text. Nevertheless, they are very important for the correct

execution of a Scheme program. If the value passed as an operand is not of the

correct type, an error will result. For example (in Scheme),

> (+ 1 #t)

+: expects type <number> as 2nd argument, given: #t; other

1In fact, the Scheme and Charme primitive + procedure take zero or more numbers as inputs,

so their actual type is (Number*) -> Number where the * denotes “zero or more”.

14.1. TYPES 14-3

arguments were: 1

> (max 3 (lambda (x) x))

>: expects type <real number> as 2nd argument, given:

#<procedure>; other arguments were: 3

Note that types are check only when an expression is evaluated. For example,

> (define (badtype a b) (+ (> a b) b))

> (badtype 3 4)

+: expects type <number> as 1st argument, given: #f; other

arguments were: 4

Note that the definition of badttype does not produce a type error, even though

their are no possible inputs for which it could make sense since the body expres-

sion uses the primitive + procedure with a Boolean input. This is dynamic type

checking. Expressions that are not well typed will produce errors when those

expressions are evaluated, but not earlier.

In this chapter, we will modify the Charme language and our interpreter, to change

the way types are checked. Instead of using latent types as is done in Scheme,

Python, and Charme, we will introduce manifest types. This means every defi-

nition and parameter will include explicit type information that describe the ex-

pected type of the variable or parameter. This requires extra typing and increases

the length of the program text, but may make it easier to understand and rea-

son about programs. To provide manifest types, we need to change the language

grammar.

In addition, we modify the Charme interpreter to perform static type checking.

With static type checking, expressions are checked for correct types before they

are evaluated. Static type checking reduces the expressiveness of our program-

ming language: it means that some expressions that would have values with dy-

namic type checking are no longer valid expressions. The advantage of static

type checking is that it detects many programming errors early. Whereas dynamic

checking checks the types during an execution on one path through the program,

static checking checks the types before an execution on all possible paths through

the program. If a correct static type checker deduces the program is well-typed,

there is no input on which it could produce a run-time type error. In many cases,

it is much better to detect an error early, than to detect it later when a program is

14-4 CHAPTER 14. TYPES

running. This is especially true in safety-critical software (such as flight avion-

ics software) where a program failure can have disastrous results (such as a plane

crashing).

14.2 Manifest Types

To provide manifest types, we modify the grammar for our language to include

type declarations. Two rules need to change: definitions and lambda expressions.

We replace the original definition rule,

Definition ::⇒ (define Name Expression)

with a rule that includes a type specification after the name:

Definition ::⇒ (define Name : Type Expression)

We modify the lambda expression grammar rule to include a type specification for

each parameter:

ProcedureExpression ::⇒ (lambda (Parameters) Expression)

Parameters ::⇒ ε | Name : Type Parameters

The new nonterminal, Type, is used to describe a type specification. A type spec-

ification can specify a primitive type. Like a primitive value, a primitive expres-

sion is pre-defined by the language and its meaning cannot be broken into smaller

parts. StaticCharme supports only two primitive types: Number (for representing

numbers), and Boolean (for representing the Boolean values #t and #f).

Type ::⇒ PrimitiveType

PrimitiveType ::⇒ Number | Boolean

14.2. MANIFEST TYPES 14-5

We also need rules for specifying procedure types. The type of a procedure is

specified by the type of it inputs (that is, a list of the input types), and the type of

its results (in Scheme and Charme, a procedure can only return one value, so the

result type is a single type). The arrow (->) symbol is used to denote a procedure

type, with the operand type list on the left side of the arrow and the result type

on the right side of the arrow. To avoid ambiguity when specifying procedures

that have procedure result types, we use parentheses around the procedure type

specification.

Type ::⇒ ProcedureType

ProcedureType ::⇒ (ProductType -> Type)

ProductType ::⇒ (TypeList)

TypeList ::⇒ Type TypeList

TypeList ::⇒ ε

The grammar changes mean StaticCharme programs that use definitions or lambda

expressions will not be valid Charme programs, and vice-versa. Here are some ex-

ample definitions in the StaticCharme language:

(define x:Number 3)

Defines x as a variable with type Number.

(define square:((Number) -> Number)

(lambda (x:Number) (* x x)))

Defines square as a procedure that takes one input of type

Number, and produces a Number as output.

(define compose:((((Number) -> Number)

((Number) -> Number))

-> ((Number) -> Number))

(lambda (f:((Number) -> Number)

g:((Number) -> Number))

(lambda (x:Number) (g (f x)))))

Defines compose as a procedure that takes as inputs two

procedures, each of which takes a single Number as input and

produces a Number as output, and produces as output a

procedure that takes a single Number as input and produces a

Number as its output.

14-6 CHAPTER 14. TYPES

The last example reveals one of the ways StaticCharme reduces the expressiveness

of Charme. In addition to being far longer than the Scheme compose procedure,

it only works on a small subset of the inputs for which the Scheme compose pro-

cedure works. It is not possible in StaticCharme to define a single compose proce-

dure that works on as many inputs as the Scheme compose procedure, (lambda

(f g) (lambda (x) (g (f x)))). This procedure takes any two proce-

dures as input, so long as the first one takes a single input, and the second one

takes a single input of the same type that is output by the first procedure. Hence,

the Scheme compose procedure works on inputs of type

((Any) -> Boolean) ((Boolean) -> Boolean)

such as (compose zero? not). We could define a compose procedure in

StaticCharme that takes different types as its inputs, but it would have to be a

different procedure from the compose procedure defined above.

14.3 Representing Types

To represent types in our StaticCharme interpreter we will use Python classes that

correspond to each of the main Type grammar rules: PrimitiveType, ProductType,

and ProcedureType. To avoid confusion with Python’s built-in type keyword,

we will prepend a C (for “Charme”) to the names of the corresponding classes.

Figure 14.1 shows the class hierarchy for representing the StaticCharme types.

The CPrimitiveType, CProductType, and CProcedureType classes all

inherit from the CType class.

The CType class defines methods for determining if a type is of a given kind (e.g.,

isPrimitiveType returns true only when invoked on a CPrimitiveType

object. In the superclass, all of these methods are defined to return False. The

subclass will override the appropriate method to return True.

class CType:

These methods are overridden by subclasses

14.3. REPRESENTING TYPES 14-7

Figure 14.1: Class hierarchy for representing types.

def isPrimitiveType(self):

return False

def isProcedureType(self):

return False

def isProductType(self):

return False

def isError(self):

return False

Primitive Types. The CPrimitiveType class is used to represent a primitive

type:

class CPrimitiveType(CType):

def __init__(self, s): self._name = s

def __str__(self): return self._name

def isPrimitiveType(self): return True

def matches(self, other):

return other.isPrimitiveType() \

and self._name == other._name

The class declaration syntax, class Name(SuperName) defines Name as a

14-8 CHAPTER 14. TYPES

subclass of SuperName. This means CPrimitiveType inherits all the methods

defined by the CType class. This is similar to how we used make-subobject

to provide subclassing in Chapter 10.

In StaticCharme there are only two primitive types, Number and Boolean. To

admit the possibility of easily adding more primitive types, however, we repre-

sent primitive types using a string that is the type name. The instance variable,

name is used to store the name of a primitive type. The primitive number type is

constructed using CPrimitiveType(’Number’).

The isPrimitiveType method is defined to always return True. This over-

rides the definition in the CType class which always returns False.

The matches method will be used to determine when two types are compatible.

It should return a true value with the parameter passed in as other is a type that

can be used when this type (the self object) is expected. For primitive types,

the only type that matches in StaticCharme is the same primitive type. Hence, the

matches procedure first checks if the other object is a primitive type, and if it

is, the types match only if they have the same name.

Procedure Types. The CProcedureType class represents a procedure type:

class CProcedureType(CType):

def __init__(self, args, rettype):

self._args = args

self._rettype = rettype

def __str__(self):

return "(" + str(self._args) + \

" -> " + str(self._rettype) + ")"

def isProcedureType(self):

return True

def getReturnType(self):

return self._rettype

def getParameterTypes(self):

return self._args

def matches(self, other):

return other.isProcedureType() \

and self._args.matches(other._args) \

and self._rettype.matches(other._rettype)

14.3. REPRESENTING TYPES 14-9

A type matches a procedure type, only if it is also a procedure type, and if both

the argument types and the return type match.

Produce Types. The CProductType class represents a list of types.

class CProductType(CType):

def __init__(self, types):

self._types = types

def __str__(self):

res = "("

firstone = True

for t in self._types:

if firstone:

firstone = False

else:

res = res + " "

res = res + str(t)

res = res + ")"

return res

def isProductType(self):

return True

def matches(self, other):

if other.isProductType():

st = self._types

ot = other._types

if len(st) == len(ot):

for i in range(0, len(st)):

if not st[i].matches(ot[i]):

return False

reached end of loop ==> all matched

return True

return False

Type Errors. The CErrorType class is used to represent type errors. It has an

instance variable, message, for describing the type error. Since CErrorType

represents a type error, it does not match any type and matches is defined to

14-10 CHAPTER 14. TYPES

always return False.

class CErrorType(CType):

def __init__(self, msg):

self._msg = msg

def __str__(self):

return "<Type Error: " + self._msg + ">"

def matches(self, other):

return False

def isError(self):

return True

Constructing Types. Since we modified the grammar to include type speci-

fication, we need some way to take the result of parsing a type specification in

the grammar, and turning it into a CType object. To do this we define a proce-

dure parseType that takes as input a list representing the output of parse on

a single expression, and returns the corresponding CType object.

def parseType(p):

if isinstance(p, str):

if p == ’Number’:

return CPrimitiveType(’Number’)

elif p == ’Boolean’:

return CPrimitiveType(’Boolean’)

else:

evalError("Undefined type: " + p)

else:

if len(p) == 3 and p[1] == ’->’:

return CProcedureType(parseType(p[0]), \

parseType(p[2]))

else:

types = map(parseType, p)

return CProductType(types)

14.4. MODIFYING THE EVALUATOR 14-11

14.4 Modifying the Evaluator

To support static types, we need to make some modifications to the evaluator. In

the next section, we describe the extensions that implement static type check-

ing. In this section, we describe the changes needed to associate types with

names. This involves changing the Environment and Procedure classes

to add types, and changing the evaluation rule for definitions and lambda expres-

sions to account for the type specifications. We also need to modify the initial

global environment so names in the global environment have associated types.

Environments with types. In StaticCharme, a variable name has not only an as-

sociated value but also an associated type. We modify the Environment class

so that instead of associating just a value with each name in the frame, there is a

<type, value> pair.

class Environment:

def __init__(self, parent):

self._parent = parent

self._frame = { }

def addVariable(self, name, typ, value):

self._frame[name] = (typ, value)

def _lookupPlace(self, name):

if self._frame.has_key(name):

return self._frame[name]

elif (self._parent):

return self._parent._lookupPlace(name)

else:

return None

def lookupVariable(self, name):

return self._lookupPlace(name)[1]

def lookupVariableType(self, name):

place = self._lookupPlace(name)

if place:

return place[0]

else:

return CErrorType("Name not found: " + name)

We use a Python tuple (i.e., (typ, value)) to represent a pair. Tuple elements

14-12 CHAPTER 14. TYPES

are selects identically to list elements: p[0] selects the first element and p[1]

selects the second element in the pair p.

The addVariable method takes an additional parameter, typ that represents

the type of the variable.2 It adds a new entry in the frame that is a tuple of the

type and value associated with the name.

The lookupPlace method returns the <type, value> tuple associated with a

name. The lookupVariable method returns the value part of the place tu-

ple. It is not necessary here to check if the name is defined (although defensive

programming practice might suggest performing such a check anyway), since the

type checking that will be done before an expression is evaluated ensures that

all names used must be defined. The lookupType method, on the other hand,

needs to deal with the situation where an undefined name is used. It returns a

CErrorType object that represents and describes the undefined name error.

Definitions. The StaticCharme grammar has a different rule for definitions than

standard Scheme because of the added type specification. The evaluation rule

needs to be modified accordingly — it should define the variable as before with

the addition of its type.

def evalDefinition(expr, env):

name = expr[1]

typ = parseType(expr[3])

env.addVariable(name, typ, value)

value = meval(expr[4], env)

env.addVariable(name, typ, value)

Procedures. The lambda expression in StaticCharme includes a type specifi-

cation for each parameter name. We modify the Procedure class to store this

information in a procedure object:

2We avoid using the proper spelling, type, since that is a keyword in Python.

14.4. MODIFYING THE EVALUATOR 14-13

class Procedure:

def __init__(self, params, typ, body, env):

self._params = params

self._body = body

self._typ = typ

self._env = env

def getParamTypes(self):

return self._typ

... # other methods unmodified

The evaluation rule for lambda expressions extracts the type specifications from

the parameter list and constructs a Procedure object:

def evalLambda(expr, env):

params = expr[1]

paramtypes = []

paramnames = []

assert len(params) % 3 == 0

for i in range(0, len(params) / 3):

name = params[i*3]

paramnames.append(name)

typ = parseType(params[(i*3)+2])

paramtypes.append(typ)

return Procedure(paramnames, paramtypes, expr[2], env)

Global Environment. The primitives placed in the global environment now must

have associated types. We modify the initializeGlobalEnvironment

procedure to include the appropriate types.

def initializeGlobalEnvironment():

global globalEnvironment

globalEnvironment = Environment(None)

14-14 CHAPTER 14. TYPES

globalEnvironment.addVariable(’#t’, \

CPrimitiveType(’Boolean’), True)

globalEnvironment.addVariable(’#f’, \

CPrimitiveType(’Boolean’), False)

globalEnvironment.addVariable(’+’, \

typeFromString(’((Number Number) -> Number)’), \

primitivePlus)

globalEnvironment.addVariable(’-’, \

typeFromString(’((Number Number) -> Number)’), \

primitiveMinus)

globalEnvironment.addVariable(’*’, \

typeFromString(’((Number Number) -> Number)’), \

primitiveTimes)

globalEnvironment.addVariable(’=’, \

typeFromString(’((Number Number) -> Boolean)’), \

primitiveEquals)

globalEnvironment.addVariable(’zero?’, \

typeFromString(’((Number) -> Boolean)’), \

primitiveZero)

globalEnvironment.addVariable(’>’, \

typeFromString(’((Number Number) -> Boolean)’), \

primitiveGreater)

globalEnvironment.addVariable(’<’, \

typeFromString(’((Number Number) -> Boolean)’), \

primitiveLessThan)

The typeFromString procedure provides a convenient way for specifying a

type using a string, as it would be done in a StaticCharme program.

def typeFromString(s):

p = parse(s)

assert len(p) == 1

return parseType(p[0])

14.5. CHECKING TYPES 14-15

14.5 Checking Types

To implement static type checking, we define a procedure typecheck that is

analogous to meval. Like meval, it takes two inputs, an expression and an

environment. The result of an application of typecheck is the type of the input

expression in the input environment. If the expression is not well typed, the result

will be a CErrorType object. Otherwise, it will be an object that represents the

type of the expression. We will modify the evalLoop procedure to check the

type of every expression before it is evaluated, and only evaluate expressions that

are well typed.

The definition of typecheck is similar to meval. It must deal with all the dif-

ferent kinds of StaticCharme expressions, but instead of evaluating them it checks

their type.

def typecheck(expr, env):

if isPrimitive(expr):

return typePrimitive(expr)

elif isConditional(expr):

return typeConditional(expr, env)

elif isLambda(expr):

return typeLambda(expr, env)

elif isDefinition(expr):

return typeDefinition(expr, env)

elif isName(expr):

return typeName(expr, env)

elif isApplication(expr):

return typeApplication(expr, env)

else:

evalError ("Unknown expression type: " + str(expr))

To implement type checking, we need to implement the appropriate typeElement

procedure. We describe all of the procedures next, except for typeConditional,

which is left as Exercise 14.5.

Primitives. The typePrimitive procedure takes a primitive expression and

14-16 CHAPTER 14. TYPES

outputs its type.

def typePrimitive(expr):

if isNumber(expr):

return CPrimitiveType(’Number’)

elif isinstance(expr, bool):

return CPrimitiveType(’Boolean’)

elif callable(expr):

return globalEnvironment.reverseLookupType(expr)

else:

assert False

The type of number and Boolean expressions is straightforward. Dealing with

primitive procedures is more difficult. They are represented by Python procedures,

so the predicate callable(expr) is true if expr is a primitive procedure. But,

there is no easy way to determine the type of the procedure.

The solution we use is to search the global environment for a name whose value

matches the primitive procedure, and use the associated type. This is done by

adding a reverseLookupType method to the Environment class that finds

the type of the place whose value matches a given value. Since all primitive

procedures are associated with names in the global environment, we can use the

reverse lookup to find the type of a primitive procedure.

class Environment:

... # other methods

def reverseLookupType(self, val):

for entry in self._frame.itervalues():

if entry[1] == val: return entry[0]

return CErrorType("Value not found")

Names. The type of a name is stored in the environment:

14.5. CHECKING TYPES 14-17

def typeName(expr, env):

return env.lookupVariableType(expr)

Definitions. A definition has no type (since it has no value), but type check-

ing a definition may still detect a type error. Hence, typeDefinition either

returns None (to represent no type) or a CErrorType object if the definition

is mistyped. The type checking rule for a definition is that the type of the value

expression must match the specified type.

One subtlety is caused by our desire to support recursive definitions. The value

subexpression may use the name that is being defined. This means that we should

type check the value subexpression in an environment in which the new name is

defined with the specified type. We do this by creating a new environment, whose

parent is the input environment, and adding the variable to the environment with

value None. The value of the name is not yet known, but type checking does

not depend on its value, so any value will do here. We create a new environment

instead of using the input environment since if the definition is not well-typed,

it should not be added to the environment. Names are added to the environment

only when the definition is evaluated.

def typeDefinition(expr, env):

assert isDefinition(expr)

if len(expr) != 5:

evalError ("Bad definition: %s" % str(expr))

name = expr[1]

if isinstance(name, str):

if expr[2] != ’:’:

return \

CErrorType ("Definition missing type: %s" \

% str(expr))

typ = parseType(expr[3])

newenv = Environment(env)

newenv.addVariable(name, typ, None)

etyp = typecheck(expr[4], newenv)

if not typ.matches(etyp):

return CErrorType \

14-18 CHAPTER 14. TYPES

("Mistyped definition: %s " \

+ "declared type %s, actual type %s" \

% (name, typ, etyp))

return None # definition has no type

else:

return CErrorType ("Bad definition: %s" % str(expr))

To find the type of the value subexpression (etyp), the procedure recursively calls

typecheck on the subexpression. If the result does not match the specified type

(typ), the definition is mistyped and a CErrorType object is returned. Note

that this outcome also results if the value subexpression itself is not well-typed,

since in that case the call to typecheck(expr[4], env) will result in a

CErrorType object which does not match any type.

Applications. An application expression is well-typed only if the first subex-

pression is a procedure. To be well-typed, the operand expressions must match

the parameter types for that procedure.

def typeApplication(expr, env):

proctype = typecheck(expr[0], env)

if not proctype.isProcedureType():

return \

CErrorType("Application of non-procedure: " \

+ str(expr[0]))

optypes = map (lambda op: typecheck(op, env), expr[1:])

optype = CProductType(optypes)

if not proctype.getParameterTypes().matches(optype):

return \

CErrorType("Parameter type mismatch: " \

+ "expected %s, given %s" \

% (proctype.getParameterTypes(), optype))

return proctype.getReturnType()

The optypes variable is initialized to the result of mapping the typecheck

procedure on each of the operand subexpressions. This produces a list of type

14.5. CHECKING TYPES 14-19

objects (possibly including CErrorType objects if any of the operand subex-

pressions is not well-typed). A CProductType object is constructed from the

operand type list. The if statement checks if the operand types match the expected

parameter types for the procedure. If they match, the type of the application ex-

pression is the return type of the applied procedure.

Lambda Expressions. To type check a lambda expression, we need to deter-

mine the type that will result from an application of the procedure. This involves

partially applying the procedure even though we have no operands. Instead, we

create a new environment containing the places corresponding to each parameter.

Because of the type specifications, their types are known, but no value is available

since the procedure is not being applied. We use None for the value, but rely on

the nature of type checking. Type checking should never depend on actual values,

only on the types which are known because of the parameter type specifications. If you steal property,

you must report its fair

market value in your

income in the year you

steal it unless in the

same year, you return it

to its rightful owner.
Your Federal Income Tax, IRS

Publication 17, p. 90.

def typeLambda(expr, env):

assert isLambda(expr)

if len(expr) != 3:

evalError ("Bad lambda expression: %s" % str(expr))

newenv = Environment(env)

params = expr[1]

paramnames = []

paramtypes = []

assert len(params) % 3 == 0

for i in range(0, len(params) / 3):

name = params[i*3]

assert params[(i*3)+1] == ’:’

typ = parseType(params[(i*3)+2])

paramnames.append(name)

paramtypes.append(typ)

newenv.addVariable(name, typ, None)

resulttype = typecheck(expr[2], newenv)

return CProcedureType(CProductType(paramtypes), \

resulttype)

The type of the lambda expression is a procedure type with the parameter types

14-20 CHAPTER 14. TYPES

given in the parameter type specifications, and the result type determined by type

checking the partial application.

Evaluator Loop. The evalLoop procedure is changed to type check every

expression before it is evaluated. If the expression is not well-typed, type checking

produces an error which is displayed. Otherwise, the expression is then evaluated.

The inner loop of the evaluated is replaced with:

for expr in exprs:

typ = typecheck(expr, globalEnvironment)

if typ and typ.isError():

print "Error: " + typ.getMessage()

else:

res = meval(expr, globalEnvironment)

if res != None:

print str(res)

Exercise 14.1. Define the typeConditional(expr, env) procedure that

checks the type of a conditional expression. It should check that all of the predi-

cate expressions evaluate to a Boolean value. In order for a conditional expression

to be type correct, the consequent expressions of each clause produce values of the

same type. The type of a conditional expression is the type of all of the consequent

expressions. ♦

Exercise 14.2.(??) A stronger type checker would require that at least one of the

conditional predicates must evaluate to a true value. Otherwise, the conditional

expression does not have the required type (instead, it produces a run-time error).

Either modify your typeConditional procedure to implement this stronger

typing rule, or explain why it is impossible to do so. ♦

14.5.1 Examples

Here are some example evolutions using our StaticCharme interpreter:

StaticCharme> (define b:Boolean 3)

14.5. CHECKING TYPES 14-21

Error: Mistyped definition: b declared type Boolean,

actual type Number

StaticCharme> (define f:((Number) -> Number)

(lambda (x: Number) (> x 3)))

Error: Mistyped definition: f declared type ((Number) -> Number),

actual type ((Number) -> Boolean)

StaticCharme> (define sapp:(() -> Number)

(lambda ()

(square #t)))

Error: Mistyped definition: sapp declared type (() -> Number),

actual type (() -> <Type Error: Parameter type mismatch:

expected (Number), given (Boolean)>)

Note that errors are reported for definitions, not when the defined names are used.

Exercise 14.3. Give the type of each of the following StaticCharme expressions.

If the expression is not well-typed, explain the type error. Assume the square

and compose definitions from Section 14.2.

a. (+ 1 #t)

b. compose

c. (compose square square)

d. (compose (lambda (a:Boolean) a) square)

e. (+ 1 2 3)

f. (square ((lambda (a:Number b:Number) (> a b)) 3 4))

g. (define infinite-loop:(() -> Number)

(lambda () (infinite-loop)))

h. (square (infinite-loop))

♦

14-22 CHAPTER 14. TYPES

14.6 Summary

Modifying our Charme interpreter to implement a language with manifest types

and static type checking reduces the expressiveness of the language in ways that

make it possible to detect programming errors earlier and more reliably. For soft-

ware on which people depend, it is far better to detect an error before a program is

executed, than to encounter an error at run-time, or to produce an incorrect result.

