
Chapter 6

Cost

A LISP programmer knows the value of everything, but the cost of nothing.

Alan Perlis

The evaluation rules in Chapter 3 explain how to determine the value of every ex-

pression that can be produced from our Scheme grammar subset. In this chapter,

we begin our exploration of how to predict the cost of evaluating a given expres-

sion. That cost is most immediately measured in the amount of time it will take

the evaluation to complete. Other measures of cost include the amount of memory

the processor will need to use to complete the evaluation and the amount of en-

ergy consumed by the processor to complete the evaluation. Indirectly, these costs

can often be translated into money: the value of the time for the person waiting

for the program to produce an answer, or the price of the computers needed to

solve a problem. In this chapter, we introduce tools for understanding the cost of

evaluating an expression. The following chapter uses these tools to characterize

procedures and make predictions about long evaluations of different applications

of those procedures will take.

6.1 Measuring Cost

The most obvious way to measure the cost of evaluating a given expression is

to just evaluate it. If we are primarily concerned with time, we could just use

6-1



6-2 CHAPTER 6. COST

a stopwatch to measure the time it takes to complete the evaluation. For more

accurate results, we can use the built-in (time expression) special form

to find the processor time used to evaluate the expression.1 Evaluating (time

expression) produces the value of expression, but also prints out the time

required to evaluate the expression (shown in our examples using slanted font).

The output printed by time provides three values:

• cpu time — The time in milliseconds the processor ran to evaluate the ex-

pression. CPU is an abbreviation for “central processing unit”, the com-

puter’s main processor.

• real time — The time in milliseconds it took to evaluate the expression.

Since other processes may be running on the computer while this expres-

sion is evaluated, the real time may be longer than the CPU time, which

reflects just the amount of time the processor was working on evaluating

this expression.

• gc time — The time in milliseconds the interpreter spent on garbage col-

lection to evaluate the expression. Garbage collection is used to reclaim

memory that is storing data that will never be used again. We will explain

how garbage collection works and why it is necessary in Chapter ??.

For example, assuming the definitions from Chapter 5:

> (time (car (append (intsto 100) (intsto 1000))))

cpu time: 188 real time: 188 gc time: 0

1

> (time (car (append (intsto 1000) (intsto 100))))

cpu time: 406 real time: 406 gc time: 219

1

> (time (car (append (intsto 1000) (intsto 100))))

cpu time: 250 real time: 250 gc time: 0

1

The last two expressions are identical, but the time taken is quite different (mainly

because garbage collection happened to be needed for the first evaluation, but

1The time construct is not part of the standard Scheme language, but is an extension provided

by the MzScheme language implemented by DrScheme.



6.1. MEASURING COST 6-3

not for the second). Timings are inexact and many properties unrelated to our

expression (such as what else is running on the computer and where things happen

to be stored in memory) affect the actual time needed for any particular evaluation.

Hence, it is dangerous to draw conclusions based on a few timings.

Exercise 6.1. Explain why time must be a special form, and cannot be imple-

mented as a normal procedure. ♦

Exercise 6.2. Suppose you are defining a procedure that needs to append two lists,

one short list, short and one very long list, long, but the order of elements in

the resulting list does not matter. Is it better to use (append short long) or

(append long short)? (Hint: the examples above provide some data, but

definitely do not provide enough information to answer this question well.) ♦

Example 6.1: Multiplying Like Rabbits.

Filius Bonacci was an Italian monk and mathematician in the 12th century. He

published a book, Liber Abbaci, on how to calculate with decimal numbers that

introduced Hindu-Arabic numbers to Europe (replacing Roman numbers) along

with many of the long arithmetic computations we learn in grade school. It also

included the problem for which Fibonacci numbers are named2:

A pair of newly-born male and female rabbits are put in a field. Rab-

bits mate at the age of one month and after that procreate every month,

so the female rabbit produces a new pair of rabbits at the end of its

second month. Assume rabbits never die and that each female rabbit

produces one new pair (one male, one female) every month from her

second month on. How many pairs will there be in one year?

We can define a function Fibonacci(n) that gives the number of pairs of rabbits at

the beginning of the nth month as:

Fibonacci(n) =







1 : n = 1
1 : n = 2

Fibonacci(n − 1) + Fibonacci(n − 2) : n > 1

2Although the sequence is named for Bonacci, it was probably not invented by him. The

sequence was already known to Indian mathematicians with whom Bonacci studied.



6-4 CHAPTER 6. COST

The third case follows from Bonacci’s assumptions: all the rabbits alive at the

beginning of the previous month are still alive (the Fibonacci(n − 1) term), and

all the rabbits that are at least two months old reproduce (the Fibonacci(n − 2)
term).

For example,

Fibonacci(1) = 1
Fibonacci(2) = 1
Fibonacci(3) = Fibonacci(2) + Fibonacci(1) = 2
Fibonacci(4) = Fibonacci(3) + Fibonacci(2) = 3
Fibonacci(5) = Fibonacci(4) + Fibonacci(3) = 5
· · ·

The sequence produced is known as the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

Translating the definition of Fibonacci above into a Scheme procedure is straight-

forward:

(define (fibo n)

(if (= n 1) 1

(if (= n 2) 1

(+ (fibo (- n 1))

(fibo (- n 2))))))

Unlike other recursive definitions we have seen, this one has two base cases, for

inputs 1 and 2.3 We need both base cases, since the recursive case involves appli-

cations of fibo to both (- n 1) and (- n 2).

Our definition of fibo appears to be correct, but when we use it to try and de-

termine the number of rabbits in five years by computing (fibo 60), our inter-

preter just hangs without producing a value.4

3This is the way Bonacci defined the sequence, and the most standard mathematical definition

of it. It is sometimes defined with the base case inputs being 0 and 1, as is the case in Abelson &

Sussman, Structure and Interpretation of Computer Programs.
4Try evaluating this yourself to see what happens. If you get bored waiting for a result, you

can use the Stop button in the upper right hand corner to terminate the evaluation.



6.1. MEASURING COST 6-5

The fibo procedure is definied in a way that guarantees it will complete when

applied to a non-negative whole number: each recursive call reduces the input

by one or two, so both inputs get closer to the base cases than the original input.

Hence, we always make progress and must eventually reach the base case, unwind

the recursive applications, and produce a value. So, we know it always eventually

finishes. To understand why the evaluation of (fibo 60) did not finish in our

interpreter, we need to consider how much work is involved in evaluating the

expression.

To evaluate (fibo 60), the interpreter follows the if-expressions to the recur-

sive case, where it needs to evaluate (+ (fibo 59) (fibo 58)). To eval-

uate (fibo 59), it needs to evaluate (fibo 58) (again!) and (fibo 57).

To evaluate (fibo 58) (which needs to be done twice), it needs to evaluate

(fibo 57) and (fibo 56). So, there is one evaluation of (fibo 60), one

evaluation of (fibo 59), two evaluations of (fibo 58), and three evalua-

tions of (fibo 57). The number of evaluations of the fibo procedure for

each input is itself the Fibonacci sequence!

To understand why, consider the evaluation tree for (fibo 4) shown in Fig-

ure 6.1. The only direct number values are the 1 values that result from evalua-

tions of either (fibo 1) or (fibo 2). Hence, the number of 1 values must

be the value of the final result, which just sums all these numbers. The number

of evaluations of applications of fibo needed to evaluate (fibo 60) is the

61st Fibonacci number — 2,504,730,781,961 — over two trillion applications of

fibo!

Although our recursive definition is correct, it is ridiculously inefficient. It in-

volves a tremendous amount of duplicated work: for the (fibo 60) example,

over a trillion evaluations each of (fibo 1) and (fibo 2).

A more efficient definition would avoid this duplicated effort. We can do this by

building up to the answer starting from the base cases. This is more like the way a

human would determine the numbers in the Fibonacci sequence: we find the next

number by adding the previous two numbers, and stop once we have reached the

number we want.

The fast-fibo procedure below computes the nth Fibonacci number, but avoids

the duplicate effort by computing the results building up from the first two Fi-

bonacci numbers, instead of working backwards. This is a form of what is known

as dynamic programming. The definition is still recursive, but unlike the original



6-6 CHAPTER 6. COST

(fibo 5)

hhhhhhhhhhhhh

VVVVVVVVVVVVV

(fibo 4)

qqqqqqq

MMMMMMM
(fibo 3)

qqqqqqq

MMMMMMM

(fibo 3)

qqqqqqq

MMMMMMM
(fibo 2) (fibo 2) (fibo 1)

(fibo 2) (fibo 1) 1 1 1

1 1

Figure 6.1: Evaluation of (fibo 5).

definition the problem is broken down differently. Instead of breaking the problem

down into a slightly smaller instance of the original problem (or in the case of Fi-

bonacci, two slightly smaller instances of the original problem), the fast-fibo

procedure builds up from the base cases until reaching the desired answer:

(define (fast-fibo n)

(define (fib-helper a b left)

(if (zero? left)

b

(fib-helper b (+ a b) (- left 1))))

(fib-helper 1 1 (- n 2)))

The helper procedure, fib-helper, takes three parameters: a is the value of

the previous-previous Fibonacci number, b is the value of the previous Fibonacci

number, and left is the number of numbers needed before reaching the target.

The initial call to fib-helper passed in 1 as a (the value of Fibonacci(1)),
and 1 as b (the value of Fibonacci(2)), and (- n 2) as left (we have n − 2
more numbers to go to reach the target, since the first two Fibonacci numbers were

passed in as a and b we are now working on Fibonacci(2)).

The body of fib-helper first checks if we have reached the target number. This

happens when left is 0, and the value is the previous Fibonacci number (which

was passed in as the value of the b parameter). If we have not reached the target



6.2. ORDERS OF GROWTH 6-7

number, we make progress by recursively calling fib-helper, but advancing

the numbers: the value that was previously b (the previous Fibonacci number) will

now be the first parameter (the previous-previous Fibonacci number), the value of

the previous Fibonacci number is the sum of the previous two, (+ a b), and

since we have advanced one number the value passed in as left is decremented

by 1.

The fast-fibo procedure produces the same output values as the original fibo

procedure, but requires far less work to do so. The number of applications of

fast-fibo needed to evaluate (fast-fibo 60) is now only 59. The value

passed in as left for the first application of fib-helper is 58, and each re-

cursive call reduces the value of left by one until the zero case is reached. This

allows us to compute the expected number of rabbits in 5 years as 1548008755920

(over 1.5 Trillion5).

6.2 Orders of Growth

From the Fibonacci example, we see that the same problem can be solved by

procedures that require vastly different resources. The important question in un-

derstanding the resources required to evaluate a procedure application is how the

required resources scale with the size of the input. For small inputs, both Fi-

bonacci procedures work using with minimal resources. For large inputs, the first

Fibonacci procedure never finishes, even on the world’s most powerful supercom-

puter, but the fast Fibonacci procedure finishes (apparently instantly) on a typical

laptop.

The important difference is the number of recursive applications: for the original

procedure, we need Fibonacci(n + 1) applications to compute (fibo n); for

the fast procedure, we need n − 2 applications to compute (fast-fibo n).

Although the amount of time each application takes is different for the two pro-

cedures, the actual time needed does not matter too much for understanding the

resources required to evaluate the procedure applications. The actual time will

depend on the computer we have, as well as on other factors like what other pro-

grams are running on the computer at the same time, and how things happen to be

5Perhaps Bonacci’s assumptions are not a good model for actual rabbit procreation. They

suggest that in about 10 years the mass of all the rabbits produced from the initial pair will exceed

the mass of the Earth, which, although scary, seems unlikely!



6-8 CHAPTER 6. COST

arranged in memory.

In this section, we introduce three notations computer scientists use to capture the

important properties of how resources required grow with input size:

• O(f) is the set of functions that grow no faster than f grows.

• Θ(f) is the set of functions that grow as fast as f grows.

• Ω(f) is the set of functions that grow no slower than f grows.

Figure 6.2 depicts the sets O, Θ, Ω for some function. The next three subsections

define these sets and provide some examples. Chapter 7 illustrates how to analyze

the time required to evaluate applications of procedures using these notations.

Figure 6.2: Visualization of the sets O(f), Ω(f), and Θ(f).



6.2. ORDERS OF GROWTH 6-9

6.2.1 Big O

The first notation we introduce is O, pronounced “big oh”. O is a mathematical

function that takes as input a function, and produces as output the set of all func-

tions that grow no faster than the input function. The set O(f) is the set of all

functions that grow as fast as, or slower than, f grows. In Figure 6.2, the O(f) set

is represented by everything inside the outer circle.

To define the meaning of O precisely, we need to consider what it means for a

function to grow. What we want to capture is how the output of the function

increases as the input to the function increases. First, we consider a few examples;

then we provide a formal definition of O.

Consider two functions, f(n) = n + 12 and g(n) = n − 7. No matter what input

value we try for n, the value of f(n) is greater than the value of g(n), but this

doesn’t matter for the growth rates. What matters is the difference between g(n)
and f(n) as the input values change. No matter what values we choose for n1 and

n2, we know g(n1) − f(n1) = g(n2) − f(n2) = −19. So, the growth rates of f
and g are identical. Hence, n − 7 is in the set O(n + 12), and n + 12 is in the set

O(n − 7).

Suppose the functions are f(n) = 2n and g(n) = 3n. The difference between

g(n) and f(n) is n. This difference increases as the input value n increases, but it

increases by the same arount as n increases. So, the growth rate as n increases is

n/n = 1. Hence, 2n is in the set O(3n) and 3n is in the set O(2n).

Now, consider f(n) = n and g(n) = n2. The difference between g(n) and f(n)
is n2 −n = n(n− 1). The growth rate as n increases is n(n− 1)/n = n− 1. The

value of n − 1 increases as n increases, so g grows faster than f . This means n2

is not in O(n), but n is in O(n2) since n grows slower than n2 grows.

For our final example, consider the number of applications of our Fibonacci pro-

cedures. For the first procedure, the number of applications is Fibonacci(n + 1);
for the second procedure, the number of applications is n − 2. The Fibonacci
function grows very rapidly. The value of Fibonacci(n + 2) is more than double

the value of Fibonacci(n) since

Fibonacci(n + 2) = Fibonacci(n + 1) + Fibonacci(n)

and Fibonacci(n + 1) > Fibonacci(n). The rate of increase is multiplicative,

and must be at least a factor of
√

2 ≈ 1.414 (since increasing by one twice more



6-10 CHAPTER 6. COST

than doubles the value).6 This is much faster than the growth rate of n − 2,

which increases by one when we increase n by one. So, n − 2 is in the set

O(Fibonacci(n + 1)), but Fibonacci(n + 1) is not in the set O(n − 2).

Some of the example functions are plotted in Figure 6.2.1. Recall that we are con-

cerned with the running time of programs as input sizes increase. The O notation

reveals the asymptotic behavior of functions. Note in the first graph, the rightmost

value of n2 is greatest, followed by 3n, n+12 and Fibonacci(n). For higher input

values, however, eventually the value of Fibonacci(n) will be greatest. For the

third graph, the values of Fibonacci(n) for input values up to 20 are so high, that

the other functions appear as nearly flat lines on the graph.

Definition of O. The function g is a member of the set O(f) if and only if there

exist positive constants c and n0 such that

g(n) ≤ cf(n)

for all values n ≥ n0.

Example 6.2: O Examples. We now show the properties claimed earlier are

true using the formal definition. We can show g is in O(f) using the definition of

O(f) by choosing positive constants for the values of c and n0, and showing that

the property g(n) ≤ cf(n) holds for all values n ≥ n0. To show g is not in O(f),
we need to explain how, for any choices of c and n0, we can find values of n that

are greater than n0 such that g(n) ≤ cf(n) does not hold.

a. n − 7 is in O(n + 12) — Choose c = 1 and n0 = 1. Then, we need to show

n − 7 ≤ 1(n + 12) for all values n ≥ 1. This is true, since n − 7 > n + 12 for

all values n.

b. n + 12 is in O(n − 7) — Choose c = 2 and n0 = 26. Then, we need to

show n + 12 ≤ 2(n − 7) for all values n ≥ 26. The equation simplifies to

n + 12 ≤ 2n − 14, which simplifies to 26 ≤ n. This is trivially true for all

values n ≥ 26.

c. 2n is in O(3n) — Choose c = 1 and n0 = 1. Then, 2n ≤ 3n for all values

n ≥ 1.

6In fact, the rate of increase is a factor of φ = (1+
√

5)/2 ≈ 1.618, also known as the “golden

ratio”. This is a rather remarkable result, but explaining why is beyond the scope of this book.



6.2. ORDERS OF GROWTH 6-11

5

10

15

20

25

1 2 3 4 5
× × × ×

× 20

40

60

80

100

2 4 6 8 10
× × × × × × ×

×
×

×

0

1000

2000

3000

4000

5000

6000

4 8 12 16 20
n

Fibonacci(n)

×××××××××××××××
×
×

×

×

×

×
n2

3n
n + 12

Figure 6.3: Orders of Growth. Each figure shows the same four functions, but for

different ranges of input values.



6-12 CHAPTER 6. COST

d. 3n is in O(2n) — Choose c = 2 and n0 = 1. Then, 3n ≤ 2(2n) simplifies to

n ≤ 4/3n which is true for all values n ≥ 1.

e. n is in O(n2) — Choose c = 1 and n0 = 1. Then n ≤ n2 for all values n ≥ 1.

f. n2 is not in O(n) — We need to show that no matter what values are chosen

for c and n0, there are values of n ≥ n0 such that the inequality n2 ≤ cn does

not hold. For any value of c, we can make n2 > cn by choosing n > c thus

invalidating the n2 ≤ cn inequality.

g. n − 2 is in O(Fibonacci(n + 1)) — Choose c = 1 and n0 = 1. Then n − 2 ≤
Fibonacci(n + 1) for all values n ≥ n0.

h. Fibonacci(n + 1) is not in O(n− 2) — No matter what values are chosen for

c and n0, there are values of n ≥ n0 such that Fibonacci(n + 1) > c(n − 2).
We know Fibonacci(12) = 144, and, from the discussion above, that:

Fibonacci(n + 2) > 2 ∗ Fibonacci(n)

This means, for n > 12, we know Fibonacci(n) > n2. So, no matter what

value is chosen for c, we can choose n = c. Then, we need to show

Fibonacci(n + 1) > n(n − 2)

The right side simplifies to n2−2n. For n > 12, we know Fibonacci(n) > n2,

so we also know Fibonacci(n + 1) > n2 − 2n. Hence, we can always choose

an n that negates the Fibonacci(n + 1) ≤ n − 2 inequality by choosing an n
that is greater than n0, 12, and c.

For all of the examples where g is in O(f), there are many possible choices for

c and n0 that would work. For the given c values, we can always use a higher n0

value than we choose. It only matters that there is some finite, positive constant

we can choose for n0, such that the required inequality, g(n) ≤ cf(n) holds for all

values n ≥ n0. Hence, our proofs would work equally well if we selected higher

values for n0 than we did. Similarly, we could always choose higher c values with

the same n0 values. The key is just to pick any appropriate values for c and n0,

and show the inequality holds for all values n ≥ n0.

The key to the proofs showing that g is not in O(f) is that the value of n that

invalidates the inequality can be selected after the values of c and n0 are chosen.



6.2. ORDERS OF GROWTH 6-13

One way to think of these is as a game between two adversaries. The first player

picks c and n0, and the second player picks n. To show the property that g is not

in O(f), we need to show that no matter what values the first player picks for c
and n0, the second player can always find a value n that is greater than n0 such

that g(n) > cf(n).

Exercise 6.3. For each of the g functions below, answer whether or not g is in the

set O(n). Your answer should include a proof: if g is in O(n) you should identify

values of c and n0 that can be selected to make the necessary inequality hold; if

g is not in O(n) you should argue convincingly that no matter what values are

chosen for c and n0 there are values of n ≥ n0 such the inequality in the definition

of O does not hold.

a. g(n) = n + 5

b. g(n) = .01n

c. g(n) = 150n +
√

n

d. g(n) = n1.5

e. g(n) = factorial(n)

♦

Exercise 6.4.(??) Given f is some function in O(h), and g is some function not

in O(h), which of the following are true (for any choice of h):

a. For all positive integers m, f(m) ≤ g(m).

b. For some positive integer m, f(m) < g(m).

c. For some positive integer m0, and all positive integers m > m0, f(m) < g(m).

♦



6-14 CHAPTER 6. COST

6.2.2 Omega (Ω)

The set Ω(f) is the set of functions that grow no slower than f grows. So, a

function g is in Ω(f) if it grows as fast as f or faster. This is different from O(f),
which is the set of all functions that grow no faster than f grows. In Figure 6.2,

Ω(f) is the set of all functions outside the darker circle.

The formal definition of Ω(f) is nearly identical to the definition of O(f): the

only difference is the ≤ operator is changed to ≥.

Definition of Ω(f). The function g is a member of the set Ω(f) if and only if

there exist positive constants c and n0 such that

g(n) ≥ cf(n)

for all values n ≥ n0.

Example 6.3: Ω Examples. We repeat the examples from the previous section

with Ω instead of O. The strategy is similar: we show g is in Ω(f) using the

definition of Ω(f) by choosing positive constants for the values of c and n0, and

showing that the property g(n) ≥ cf(n) holds for all values n ≥ n0. To show g
is not in Ω(f), we need to explain how, for any choices of c and n0, we can find a

choice for n ≥ n0 such that g(n) < cf(n).

a. n − 7 is in Ω(n + 12) — Choose c = 1

2
and n0 = 38. Then, we need to show

n − 7 ≥ 1

2
(n + 12) for all values n ≥ 38. This is true, since the inequality

simplifies n

2
≥ 19 which holds for all values n ≥ 38.

b. n + 12 is in Ω(n − 7) — Choose c = 1 and n0 = 1.

c. 2n is in Ω(3n) — Choose c = 1

3
and n0 = 1. Then, 2n ≥ 1

3
(3n) simplifies to

n ≥ 0 which holds for all values n ≥ 1.

d. 3n is in Ω(2n) — Choose c = 1 and n0 = 1. Then, 3n ≥ 2n simplifies to

n ≥ 0 which is true for all values n ≥ 1.

e. n is not in Ω(n2) — Whatever values are choosen for c and n0, we can choose

n ≥ n0 such that n ≥ cn2 does not hold. We can choose n > 1

c
(note that c

must be less than 1 for the inequality to hold for any positive n, so if c is not

less than 1 we can just choose n ≥ 2). Then, the right side of the inequality

cn2 will be greater than n, and the needed inequality n ≥ cn2 does not hold.



6.2. ORDERS OF GROWTH 6-15

f. n2 is in Ω(n) — Choose c = 1 and n0 = 0: n2 ≥ n for all n ≥ 0.

g. n− 2 is not in Ω(Fibonacci(n+1)) — No matter what values are choosen for

c and n0, we can choose n ≥ n0 such that n − 2 ≥ Fibonacci(n + 1) does

not hold. The value of Fibonacci(n + 1) more than doubles every time n is

increased by 2 (see Section 6.2.1), but the value of c(n − 2) only increases by

2c. Hence, if we keep increasing n, eventually Fibonacci(n + 1) > c(n − 2)
for any choice of c.

h. Fibonacci(n + 1) is in Ω(n− 2) — choose c = 1 and n0 = 0: Fibonacci(n +
1) ≥ n − 2 for all n ≥ 0.

Exercise 6.5. Repeat Exercise 6.2.1, but using Ω instead of O. ♦

6.2.3 Theta (Θ)

The notation Θ(f) is the set of functions that grow at the same rate as f . It is the

intersection of the sets O(f) and Ω(f). Hence, a function g is in Θ(f) if and only

if g is in O(f) and g is in Ω(f). In Figure 6.2, Θ(f) is the light grey ring.

An alternate definition combines the inequalities for O and Ω:

Definition of Θ(f). The function g is a member of the set Θ(f) if any only if

there exist positive constants c1, c2, and n0 such that

c1f(n) ≥ g(n) ≥ c2f(n)

is true for all values n ≥ n0.

Example 6.4: Θ Examples. We repeat the previous examples using Θ. De-

termining membership in Θ(f) is simple once we know membership in O(f) and

Ω(f).

a. n− 7 is in Θ(n + 12) — It is in O(n + 12) and in Ω(n + 12). Intuitively, n− 7
increases at the same rate as n + 12, since adding one to n adds one to both

function outputs. Choose c1 = 1, c2 = 1

2
, and n0 = 38. We can choose our

value of c1 as the value of c in the O(f) proof, c2 as the value of c in the Ω(f)
proof, and n0 as the maximum value of the n0 values from the O(f) and Ω(f)
proofs.



6-16 CHAPTER 6. COST

b. n + 12 is in Θ(n − 7) — It is in O(n − 7) and in Ω(n − 7). Choose c1 = 2,

c2 = 1, and n0 = 1.

c. 2n is in Θ(3n) — It is in O(3n) and in Ω(3n). Choose c1 = 1, c2 = 1

3
, and

n0 = 1.

d. 3n is in Θ(2n) — It is in O(2n) and in Ω(2n). Choose c1 = 2, c2 = 1, and

n0 = 1.

e. n is not in Θ(n2) — It is not in Ω(n2). Intuitively, n grows slower than n2 since

increasing n by one always increases the value of the first function, n, by one,

but increases the value of n2 by 2n + 1, a value that increases as n increases.

f. n2 is not in Θ(n) — It is not in O(n).

g. n − 2 is not in Θ(Fibonacci(n + 1)) — It is not in Ω(n).

h. Fibonacci(n + 1) is not in Ω(n − 2) — It is not in O(n − 2).

If g(n) is in Θ(f(n)), then the sets Θ(f(n)) and Θ(g(n)) are identical. We also

know O(f(n)) = O(g(n)) and Ω(f(n)) = Ω(g(n)). Intuitively, since g(n) ∈
Θ(f(n)) means g and f grow at the same rate,

Exercise 6.6. Repeat Exercise 6.2.1, but using Θ instead of O. ♦

6.3 Properties of O, Ω, and Θ

Because O, Ω, and Θ are concerned with the asymptotic properties of functions,

that is, how they grow as inputs approach infinity, many functions that are different

when the actual output values matter generate identical sets with then O, Ω, and

Θ operators. For example, we saw n−7 is in Θ(n+12) and n+12 is in Θ(n−7).
In fact, every function that is in Θ(n − 7) is also in Θ(n + 12).

More generally, if we could prove g is in Θ(an+k) where a is a positive constant

and k is any constant, then g is also in Θ(n). Thus, the set Θ(an+k) is equivalent

to the set Θ(n). We can prove Θ(an + k) ≡ Θ(n) from the definition of Θ. To

prove the sets are equivelent, we need to show that (1) any function g which is in

Θ(n) is also in Θ(an + k); and (2) any function g which is in Θ(an + k) is also

in Θ(n):



6.3. PROPERTIES OF O, Ω, AND Θ 6-17

1. Suppose g is in Θ(n). This means we can find positive constants c1, c2, and

n0 such that c1n ≥ g(n) ≥ c2n. In order to show g is also in Θ(an + k),
we need to show that we can find d1, d2, and m0 such that d1(an + k) ≥
g(n) ≥ d2(an + k) for all n ≥ m0. Simplifying the inequalities, we need

(ad1)n + kd1 ≥ g(n) ≥ (ad2)n + kd2. Ignoring the constants for now, we

can pick d1 = c1

a
and d2 = c2

a
. Since g is in Θ(n), we know

(a
c1

a
)n ≥ g(n) ≥ (a

c2

a
)n

is satisfied. As for the constants, as n increases they become insignificant.

Adding one to d1 and d2 adds an to the first term and k to the second term.

Hence, as n grows, an becomes must greater than k.

2. Suppose g is in Θ(an + k). This means we can find positive constants

c1, c2, and n0 such that c1(an + k) ≥ g(n) ≥ c2(an + k). Simplifying

the inequalities, we have (ac1)n + kc1 ≥ g(n) ≥ (ac2)n + kc2 or, for

some different positive constants b1 = ac1 and b2 = ac2 and constants

k1 = kc1 and k2 = kc2, b1n + k1 ≥ g(n) ≥ b2n + k2. In order to show

g is also in Θ(n), we need to show that we can find d1, d2, and m0 such

that d1n ≥ g(n) ≥ d2n for all n ≥ m0. If it were not for the constants,

we already have this with d1 = b1 and d2 = b2. As before, the constants

become inconsequential as n increases.

This property also holds for the O and Ω operators — note that our proof above

for Θ also proved the property for the O and Ω inequalities.

The result can be generalized to any polynomial. The set Θ(a0 + a1n + a2n
2 +

... + akn
k) is equivalent to Θ(nk). Because we are concerned with the asymptotic

growth, only the highest power term of the polynomial matters once n gets big

enough.

Exercise 6.7. Show that Θ(n2 − n) is equivalent to Θ(n2). ♦

Exercise 6.8. (??) Is Θ(n2) equivalent to Θ(n2.1)? Either prove they are identical,

or prove they are different. ♦

Exercise 6.9. (??) Is Θ(2n) equivalent to Θ(3n)? Either prove they are identical,

or prove they are different. ♦



6-18 CHAPTER 6. COST

6.4 Summary

By considering the asymptotic growth of functions, rather than their actual out-

puts, we can better capture the important properties of how the cost of evaluating

a procedure application grows with the size of the input. The O, Ω, and Θ oper-

ators allow us to hide constants and factors that change depending on the speed

of our processor, how data is arranged in memory, and the specifics of how our

interpreter is implemented. Instead, we can consider the essential properties of the

procedure. In the next chapter, we explore how to use these operators to analyze

the costs of evaluating different applications of procedures.


