
Chapter 9

State

Faced with the choice between changing one’s mind and proving that there is no need to do

so, almost everyone gets busy on the proof.

John Kenneth Galbraith

The subset of Scheme we have used until this chapter provides no means to change

the value associated with a name. This enabled very simple evaluation rules for

names, as well as allowing the substitution model of evaluation. Since the value

associated with a name was always the value it was defined as, no complex eval-

uation rules are needed to determine what the value associated with a name is. In

this chapter, we will introduce special forms known as mutators that allow pro-

grams to change the value associated with a given name. Introducing mutation

does not change the computations we can express—every computation that can

be expressed using mutation could also be expressed functionally. It does, how-

ever, make it possible to express certain computations more efficiently, elegantly,

and clearly than could be done without it.

9.1 Mutation

The first mutator we describe is the set! special form expression. The exclama-

tion point (!) at the end of the name (pronounced “bang!”) is a naming convention

used to indicate that a special form or procedure may mutate state. The set! ex-

9-1



9-2 CHAPTER 9. STATE

pression replaces the value associated with a name. A set expression is also known

as an assignment. It assigns a new value to a variable.

The grammar rule for the set expression is:

Expression ::⇒ SetExpression

SetExpression ::⇒ (set! Name Expression)

The evaluation rule is:

Evaluation Rule 7: Set. To evaluate a set expression, evaluate the

expression, and replace the value associated with the name with the

value of the expression. A set expression has no value.

For example:

> (define num 200)

> num

200

> (set! num 150)

> num

150

The set expression changes the value associated with the name num from the orig-

inally defined value to the value of the set expression. Note that the set expression

does not produce an output value. Set expressions are used for their side-effects.

They change the value of some state (namely, the value associated with the name

in the set expression), but do not produce an output.

9.1.1 Begin Expression

Since set expressions do not have a value, they are often used inside a begin ex-

pression. The grammar rule for begin is:



9.1. MUTATION 9-3

Expression ::⇒ BeginExpression

BeginExpression ::⇒ (begin MoreExpressions Expression)

The evaluation rule for begin is:

Evaluation Rule 8: Begin. To evaluate a begin expression, (begin

Expression1 Expression2 . . . Expressionk), evaluate each

subexpression in order from left to right. The value of the begin ex-

pression is the value of the last subexpression, Expressionk.

The begin expression is useful when we are evaluating expressions that have side-

effects. This means the expression is important not for the value it produces (since

the begin expression ignores the values of all expressions except the last one), but

for some change to the state of the machine it causes.

The special define syntax for procedures includes a hidden begin expression. The

syntax,

(define (Name Parameters)

MoreExpressions Expression)

is an abbreviation for:

(define Name

(lambda (Parameters)

(begin MoreExpressions Expression)))

The let expression also includes a hidden begin expression. The let expression

(let ((Name1 Expression1)

(Name2 Expression2)

· · ·

(Namek Expressionk))

MoreExpressions Expression)



9-4 CHAPTER 9. STATE

is equivalent to the application expression:

((lambda (Name1 Name2 . . . Namek)

(begin MoreExpressions Expression))

Expression1

Expression2

· · ·

Expressionk)

9.1.2 Impact of Set Expressions

Introducing the set expression presents many complications for our programming

model. In particular, it invalidates the substitution model of evaluation we in-

troduced in Section 3.6.2. Previously, all the procedures we could define were

functional—every time they are applied to the same inputs, they produce the same

output. Set expressions allow us to define non-functional procedures that produce

different results for different applications even with the same inputs.

For example, consider the update-counter! procedure:

(define counter 0)

(define (update-counter!)

(set! counter (+ counter 1))

counter)

Every time we evaluate (update-counter!) it increments the value asso-

ciated with the name counter, and produces as output the resulting value of

counter. Hence, the value of (update-counter!) is 1 the first time it is

evaluated, 2 the next time, and so forth.

Consider evaluating the expression

(+ counter (update-counter!))

Recall that the evaluation rule for the application expression does not specify in

which order the subexpressions are evaluated. But, the value of the name expres-

sion counter depends on whether it is evaluated before or after the application



9.1. MUTATION 9-5

of update-counter! is evaluated! This means, there is no clear value for the

expression: if the second subexpression, counter, is evaluated before the third

subexpression, (update-counter!), the value of the expression is 1 the first

time it is evaluated, and 3 the second time it is evaluated. Alternately, but consis-

tently with the evaluation rules, the third subexpression could be evaluated before

the second subexpression. With this ordering, the value of the expression is 2 the

first time it is evaluated, and 4 the second time it is evaluated.

9.1.3 Names, Places, Frames, and Environments

Because of the power set expressions provide to change the value associated with

a name, the order in which expressions are evaluated now matters. As a result of

adding mutation, we will need to revisit several of our other evaluation rules and

change the way we think about processes.

Previously, a Name was an identifier that has an associated value. Since the value

associated with a name can now change, we instead think of a name as a way to

identify a place. A place holds a value. A frame is a collection of places.

An environment is a pair consisting of a frame and a pointer to a parent envi-

ronment. A special environment known as the global environment has no parent

environment. The global environment exists when the interpreter starts, and is

maintained for the lifetime of the interpreter. Other environments may be created

and destroyed as a program is evaluated. All environments besides the global

environment have a parent which is another environment. The ultimate parent en-

vironment of any environment (other than the global environment which has no

parent) is the global environment. This means that if we start with any environ-

ment, and continue to follow their parent pointers until there is no parent, we will

always end in the global environment.

The key change to our evaluation model is that whereas before we could think

about evaluating expressions without any notion of where they are evaluated, once

we introduce mutation, we need to consider the environment in which an expres-

sion is evaluated. An environment captures the current state of the interpreter. The

value of an expression depends on both the expression itself, and on the environ-

ment in which it is evaluated.

Figure 9.1 illustrates some environments. The global environment contains a



9-6 CHAPTER 9. STATE

Figure 9.1: Sample environments.

frame that has three names. Each name has an associated place that contains

the value associated with that name. The value associated with counter is

the value in the place next to counter, currently 0. The value associated with

set-counter! is the procedure we defined in the previous subsection. A pro-

cedure is characterized by the parameters (in this case, the parameter list is empty),

and the body of the procedure (the begin expression shown in the figure). In ad-

dition, a procedure has an environment pointer. This points to the environment in

which the procedure body is to be evaluated. (We’ll cover the new evaluation rule

for procedures later.)

9.1.4 Evaluation Rules with State

Introducing mutation requires us to revise the evaluation rule for names, the defi-

nition rule, and the application rule for constructed procedures. All of these rules

are adapted to be more precise about how values are associated with names by

using environments.

The evaluation rule for a name expression becomes:



9.1. MUTATION 9-7

Evaluation Rule 2 (with state): Names. A name expression eval-

uates to the value associated with the name. To find the value asso-

ciated with a name, look for the name in the frame associated with

the evaluation environment. If it contains a place with the name, the

value of the name expression is the value in that place. If it does not

contain a place with the name, the value of the name expression is the

value of the name expression evaluated in the parent environment if

the current evaluation environment has a parent. Otherwise, the name

expression evaluates to an error (the name is not defined).

For example, to evaluate the value of the name expression x in Environment B

in Figure 9.1, we would first look in the frame in Environment B for a place

named x. Since there is no place named x in that frame, we follow the parent

environment pointer for Environment B to Environment A, and evaluate the value

of the name expression x in Environment A. The frame in Environment A contains

a place named x, that contains the value 7. Hence, the value of evaluating x in

Environment B is 7. If we instead evaluated the same expression in the Global

Environment, the value would be 3, since that is the value in the place named x in

the frame of the Global Environment.

To evaluate the value of the name expression y in Environment A, we would first

look in the frame in Environment A for a place named y. Since none is found,

we continue by evaluating the expression in the parent environment, which is the

global environment. The global environments frame does not contain a place

named y, and the global environment has no parent, so the expression has no

value. It is an error, since there is no place named y visible from Environment A.

We also need a new evaluation rule for definitions:

Definition Rule (with state). A definition creates a new place named

after the definition name in the frame associated with the evaluation

environment. The value in the place is value of the expression. If there

is already a place with the name in the current frame, the definition

replaces the old place with the new place and value.

The part of the rule that deals with redefinitions means we could use define in

some situations to mean something similar to set!. It does not mean the same

thing, however, since a set expression finds the place associated with the name



9-8 CHAPTER 9. STATE

and puts a new value in that place. A set expression evaluation follows the Eval-

uation Rule 2 (with state) above to find the place associated with a name. Hence,

(define Name Expr) has different meaning from (set! Name Expr)

when there is no place named Name in the current execution environment. To

avoid this confusion, we encourage you to only use define for the first defini-

tion of a name in the global environment, and to always use set! when the intent

is to change the value associated with a name.

The final evaluation rule that must change as a result of mutation is the evaluation

rule for applications of constructed procedures. The substitution model fails us

now, since the value of an expression depends on the environment in which it

is evaluated. The new application rule replaces substitution with creating a new

environment containing places named for the parameters containing the values of

the corresponding operand expressions:

Application Rule 2 (with state): Constructed Procedures. To ap-

ply a constructed procedure:

1. Construct a new environment, whose parent is the environment

to which the environment pointer of the applied procedure points.

2. Create a place in the frame of the new environment for each pa-

rameter containing the value of the corresponding operand ex-

pression.

3. Evaluate the body of the procedure in the newly created envi-

ronment. The resulting value is the value of the application.

For example, consider evaluating the application expression (max 3 4) where

max is the procedure defined in Example 3.7:

(define (max a b) (if (> a b) a b)))

To evaluate an application of max, we follow Application Rule 2 above. First, we

create a new environment. Since max was defined in the global environment, its

environment pointer points to the global environment. Hence, the parent environ-

ment for the new environment is the global environment. Then, we create places

in the new environment’s frame named a and b. The value in the place associ-

ated with a is 3, the value of the first operand expression. The value in the place



9.1. MUTATION 9-9

associated with b is 4. Then, we follow step 3, evaluating the body expression,

(if (> a b) a b), in the newly created environment. Figure 9.2 shows the

environment where the body expression is evaluated. When we evaluate the name

expression a in this environment, the place associated with a is found in the exe-

cution environment and it contains the value 3.

Figure 9.2: Environment created to evaluate (max 3 4).

The impact of the new application rule is more pronounced when we consider a

procedure that creates a new procedure. For example, the make-incrementer

procedure takes the increment number as input and produces as output a proce-

dure. The output procedure takes a number as input, and ouputs that number plus

the increment number.

(define (make-incrementer inc)

(lambda (n) (+ n inc)))

Suppose we evaluate the definition (define inc (make-incrementer 1)).

The resulting environment is showing in Figure 9.3. The name inc has a value

that is the procedure resulting from the application of (make-incrementer

1). To evaluate the application, we follow the application rule above and create

a new environment containing a frame with the parameter names (in this case,

just inc) and their associated operand values (in this case, 1). The result of the



9-10 CHAPTER 9. STATE

application is the value of evaluating its body in this new environment. Since the

body is a lambda expression, it evaluates to a procedure. That procedure was cre-

ated in the execution environment that was created to evaluate the application of

make-incrementer, hence, its environment pointer points to the created new

environment (which contains a place named inc holding the parameter value, 1)

instead of pointing to the global environment.

Figure 9.3: Environment after (define inc (make-incrementer 1)).

To evaluate an application of the inc procedure, now defined in the global envi-

ronment, we follow the evaluation rules. Evaluating (inc 149) involves using

the application rule. It creates a new environment with a frame containing the

place n and its associated value 149. Inside that environment, we evaluate the

body of the procedure, (+ n inc). The value for n is found in the execu-

tion environment. The value for inc is not found their, so evaluation continues

by looking in the parent environment. This contains a place inc containing the

value 1. The inc name in the global environment is not reached. Figure 9.1.4

illustrates the environment for evaluating the body of the inc procedure.

Exercise 9.1.(?) Devise a Scheme expression that could have four possible val-

ues, depending on the order in which application subexpressions are evaluated. ♦



9.1. MUTATION 9-11

Figure 9.4: Environment for evaluating the body of (inc 149).



9-12 CHAPTER 9. STATE

Exercise 9.2. Draw the environment after evaluating:

> (define alpha 0)

> (define beta 1)

> (define update-beta!

(lambda () (set! beta (+ alpha 1)))

> (set! alpha 3)

> (update-beta!)

> (set! alpha 4)

♦

Exercise 9.3. Draw the environment after evaluating the following expressions,

and explain what the value of the final expression is. (You may want to rewrite

the let as an application.)

> (define (make-applier proc) (lambda (x) (proc x))

> (define p (make-applier (lambda (x) (let ((x 2)) x))))

> (p 4)

♦

9.1.5 Pair Mutators

The set-car! and set-cdr! procedures change the values in the compo-

nents of a pair:

• (set-car! Expressionpair Expressionvalue — replaces the value

in the first component of the pair to which the Expressionpair evaluates with

the value of Expressionvalue. If the Expressionpair does not evaluate to a

pair, the expression is an error.

• (set-cdr! Expressionpair Expressionvalue — replaces the value

in the second component of the pair to which the Expressionpair evaluates



9.1. MUTATION 9-13

with the value of Expressionvalue. If the Expressionpair does not evaluate to

a pair, the expression is an error.

For example:

> (define pair (cons 1 2))

> (set-car! pair 3)

> pair

(3 . 2)

> (set-cdr! pair 4)

> pair

(3 . 4)

The set-cdr! procedure allows us to create a pair where the second part of the

pair is itself!

> (set-cdr! pair pair)

This creates the rather frightening object shown in Figure 9.1.5. Every time we

apply cdr to pair, we get the same pair as the output. Hence, the value of

(car (cdr (cdr (cdr (cdr (cdr pair))))))

is 3.

Figure 9.5: Pair created by evaluating set-cdr! pair pair.

Exercise 9.4. Using the length procedure defined in Section 5.3.1, what does

(length pair) evaluate to? (Where pair it the pair shown in Figure 9.1.5.)

♦

Exercise 9.5.(??) Define a list? procedure that behaves correct on inputs like

pair. Circular structures like this are not lists. ♦



9-14 CHAPTER 9. STATE

9.2 Imperative Programming

Mutation enables a style of programming known as imperative programming.

Whereas functional programming, on which we have focused until now, is con-

cerned with defining procedures that can be composed to solve a problem, imper-

ative programming is primarily concerned with modifying state in ways that lead

to the desired state which provides a solution to a problem. The main operation

in function programming is application. A functional program applies a series

of procedures, passing the outputs of one application as the inputs of the next

procedure application. With imperative programming, the primary operation is

assignment (embodied by set! in Scheme, but typically by an assignment oper-

ator, := or =, in languages designed for imperative programming such as Pascal,

Algol60, Java, and C++).

The next subsection presents imperative-style versions of some of the procedures

we have seen in previous chapters for manipulating lists. The following subsection

describes some imperative control structures.

9.2.1 List Mutators

All the procedures for changing the value of a list in Section 5.3.3 involved con-

structing new lists. If our goal is only to change some elements in an existing list,

this is inefficient. It wastes memory to construct a new list, and may require more

running time than a procedure that modifies the input list instead. Here, we revisit

some of the procedures from Section 5.3.3, but this time instead of producing new

lists with the desired property, we modify the input list.

Example 9.1: Mapping. The map procedure produces a new list that is the

result of applying the same procedure to every element in the input list. Using

mutation, we can define a map! procedure that modifies the elements in the input

list instead.

(define (map! f p)

(if (null? p) (void)

(begin

(set-car! p (f (car p)))

(map! f (cdr p)))))



9.2. IMPERATIVE PROGRAMMING 9-15

The base case uses (void) to evaluate to no value. The void procedure takes

no inputs and outputs no value. Unlike map which evaluates to a list, there is no

output value for a map! application. The purpose of the application is to mutate

the input list.

The running time of the map! procedure is in Θ(n) where n is the number of

elements in the input list, assuming the procedure passed to map has constant

running time. There will be n recursive applications of map! since each one

passes in a list one element shorter than the input list, and each application requires

constant time. This is asymptotically identical to the map procedure, but we would

expect the actual running time to be faster since there is no need to construct a new

list.1

Compare the definition of map! to the earlier definition of map:

(define (map f p)

(if (null? p) null

(cons (f (car p)) (map f (cdr p)))))

Whereas the functional map procedure needs to use cons to build up the output

list, the imperative map! procedure uses set-car! to mutate the elements in

the list.

The example interaction below illustrates the different between map and map!:

map is functional—it produces a value but does not modify its input list; map! is

imperative—it modifies the input list but produces no value.

> (define a (list 1 2 3))

> (map square a)

(1 4 9)

> a

(1 2 3)

> (map! square a)

> a

(1 4 9)

1The memory consumed is asymptotically different. The map procedure must maintain n stack

frames because of the cons, and allocates n new cons cells, so it requires memory in Θ(n). The

map! procedure is tail recursive (so no stack needs to be maintained), and does not allocate any

new cons cells, so it requires constant memory.



9-16 CHAPTER 9. STATE

Example 9.2: Filtering. The filter procedure takes as inputs a test pro-

cedure as a parameter, and produces as output a list containing the elements of

the input list to which applying the test procedure evaluates to a true value. In

Example 5.3.3, we defined filter as:

(define (filter test p)

(if (null? p) null

(if (test (car p))

(cons (car p) (filter test (cdr p)))

(filter test (cdr p)))))

An imperative version of filter would remove the unsatisfying elements from

the input list, instead of creating a new list. We define filter! by using

set-cdr! to skip over elements that should not be included in the filtered list.

(define (filter! test p)

(if (null? p) null

(begin

(set-cdr! p (filter! test (cdr p)))

(if (test (car p))

p

(cdr p)))))

Assuming the test procedure has constant running time, the running time of the

filter! procedure is in Θ(n) where n is the length of the input list. This is

comparable to the filter procedure.

Unlike map! which produces no output value, filter! does produce an output

value. This is necessary to produce the correct behavior when the first element is

not in the list. Consider this example:

> (define a (list 1 2 3 1 4))

> (filter! (lambda (x) (> x 1)) a)

(2 3 4)

> a

(1 2 3 4)



9.2. IMPERATIVE PROGRAMMING 9-17

The value of a after the filter! application still includes the initial 1, although

the fourth element 1 is removed. There is no way for a procedure to remove the

first element of the list: the set-car! and set-cdr! procedures only enable

us to change what the pair’s components contain. Hence, the way filter!

should be used is with set!:

(set! a (filter! (lambda (x) (> x 1)) a))

Example 9.3: Append. The append procedure takes as input two lists and

produces as output a list consisting of the elements of the first list followed by

the elements of the second list. An imperative version of this procedure instead

mutates the first list so after the application it now contains the elements of both

lists.

(define (append! p q)

(if (null? p)

(error "Cannot append to an empty list")

(if (null? (cdr p))

(set-cdr! p q)

(append! (cdr p) q))))

Our definition disallows appending to null—this is necessary since if the input is

null there is no pair to modify. The append! library procedure in MzScheme

takes a different approach. It is defined when the first list is null, and produces the

value of the second list as output in this case. This has unexpected behavior when

an expression like (append! a b) is evaluated where the value of a is null

since a is not modified to be the appended list.

As with append, the running time of the append! procedure is in Θ(n) where

n is the number of elements in the first input list.

Exercise 9.6.(??) Define an imperative-style procedure, reverse!, that reverses

the elements of a list. Is it possible to implement a reverse! procedure that is

asymptotically faster than the reverse procedure from Section 5.3.3? ♦



9-18 CHAPTER 9. STATE

9.2.2 Imperative Control Structures

The imperative style of programming makes progress by using assignments to

manipulate state. In many cases, solving a problem requires repeated operations.

With functional programming, this is done using recursive definitions. We make

progress towards a base case by passing in different values for the operands with

each recursive application. With imperative programming, we can make progress

by changing state repeatedly without needing to passing in different operands.

A common control structure in imperative programming is a while loop. A while

loop has a test condition and a body. The test condition is a predicate. If it evalu-

ates to true, the while loop body is executed. Then, the test condition is evaluated

again. The while loop continues to execute until the test condition evaluates to

false.

We can define while as a procedure that takes as input two procedures, a test

procedure and a body procedure, each of which take no parameters. Even though

the test and body procedures take no parameters, they need to be procedures in-

stead of expressions, since every iteration of the loop should re-evaluate the test

and body expressions of the passed procedures.

(define (while test body)

(if (test)

(begin

(body)

(while test body))

(void))) ; no value

We can use the while procedure to implement Fibonacci similarly to the fast-fibo

procedure:

(define (while-fibo n)

(let ((a 1)

(b 1)

(left (- n 3)))

(while (lambda () (>= left 0))

(lambda ()

(set! b (+ a b))



9.2. IMPERATIVE PROGRAMMING 9-19

(set! a (- b a))

(set! left (- left 1))))

b))

The value of b is the final result of the while-fibo procedure. Each iteration

through the while loop the body procedure is applied, updating the values of a

and b to the next Fibonacci numbers. Note the assignment to a: the assigned

value is computed as (- b a) instead of b. The reason for this is the previous

set! expression has already changed the value of b, by adding a to it. Since the

next value of a should be the old value of b, we can find the necessary value by

subtracting a. An alternative approach, which would save the need to do subtrac-

tion, is to store the old value in a temporary value. We could use this as the body

procedure instead:

(lambda ()

(let ((oldb b))

(set! b (+ a b))

(set! a oldb)

(set! left (- left 1))))

Programming languages developed for imperative programming provide control

constructs similar to the while procedure defined above. For example, here

is what the while-fibo procedure would look like in the Java programming

language:2

static public int fibonacci (int n) {

int a = 1;

int b = 1;

int left = n - 3;

while (left >= 0) {

int oldb = b;

b = a + b;

a = oldb;

2Don’t worry if not everything in this code makes sense. The point of the example is to give

you a sense what other programming languages look like, and how similar control structures are

across different languages.



9-20 CHAPTER 9. STATE

left = left - 1;

}

return b;

}

Here is what it would look like in Python:3

def fibonacci (n):

a = 1

b = 1

left = n - 3

while left >= 0:

oldb = b

b = a + b

a = oldb

left = left - 1

return b

Exercise 9.7. Define the map! example from the previous section using while.

♦

Exercise 9.8. Another popular imperative programming structure is a repeat-

until loop. Define a repeat-until procedure that takes two inputs, a body

procedure and a test procedure. The procedure should evaluate the body procedure

repeatedly, until the test procedure evaluates to a true value. For example, using

repeat-until we could define factorial as:

(define (factorial n)

(let ((fact 1))

(repeat-until

(lambda ()

(set! fact (* fact n))

(set! n (- n 1)))

3As with the Java example, don’t worry if not everything in this code makes sense. We will be

introducing Python soon.



9.3. SUMMARY 9-21

(lambda () (< n 1)))

fact))

♦

9.3 Summary

Adding the ability to change the value associated with a name complicates our

evaluation rules, but also enables simpler and more efficient solutions to many

problems. Once we add assignment to our language, the order in which things

happen affects the value of some expressions. Instead of evaluating expressions,

we now need to always evaluate an expression in a particular execution environ-

ment. Mutation allows us to manipulate larger data structures efficiently since it

is not necessary to copy the data structure to make any changes to it. We have al-

ready seen with the list mutation procedures that some changes can be done more

efficiently using mutation. We can also use mutation to maintain complex data

structures for representing tables of data such as a relational database.


