Lecture 26: Proving Uncomputability

Visualization of E_8

David Evans
http://www.cs.virginia.edu/evans

The Halting Problem

Input: a specification of a procedure P

Output: If evaluating an application of P halts, output true. Otherwise, output false.

halts? Examples

```scheme
> (halts? '(lambda () (+ 3 3)))
#t
> (halts? '(lambda () (define (f) (f)) (f))
#f
> (halts? '(lambda ()
        (define (fibo n)
            (if (or (= n 1) (< n 2))) 1
            (+ (fibo (- n 1)) (fibo (- n 2)))))
        (fibo 100)))
#t
```

Halting Examples

```scheme
> (halts? `(lambda ()
            (define (sum-of-two-primes? n)
                  ;; try all possibilities...)
            (define (test-goldbach n)
                  (if (not (sum-of-two-primes? n))
                     #f ; Goldbach Conjecture wrong
                     (test-goldbach (+ n 2))))
            (test-goldbach 2))
```

Goldbach Conjecture (see GEB, p. 394):
Every even integer can be written as the sum of two primes.

Can we define halts? ?

- We could try for a really long time, get something to work for simple examples, but could we solve the problem – make it work for all possible inputs?

Informal Proof

```scheme
(define (paradox)
    (if (halts? 'paradox)
        (loop-forever)
        #t))
```

If paradox halts, the if test is true and it evaluates to (loop-forever) - it doesn’t halt!

If paradox doesn’t halt, the if test is false, and it evaluates to #t. It halts!
Proof by Contradiction
1. Show \(X \) is nonsensical.
2. Show that if you have \(A \) you can make \(X \).
3. Therefore, \(A \) must not exist.
\[X = \text{paradox} \]
\[A = \text{halts? algorithm} \]

How convincing is our Halting Problem proof?
(define (paradox)
 (if (halts? 'paradox)
 (loop-forever)
 #t))
If contradict-halts halts, the if test is true and it evaluates to (loop-forever) - it doesn't halt!
If contradict-halts doesn't halt, the if test if false, and it evaluates to #t. It halts!
This “proof” assumes Scheme exists and is consistent! Scheme is too complex to believe this...we need a simpler model of computation (in two weeks).

Evaluates-to-3 Problem
Input: A procedure specification \(P \)
Output: \textbf{true} if evaluating (\(P \)) would result in 3; \textbf{false} otherwise.

Is “Evaluates to 3” computable?

Proof by Contradiction
1. Show \(X \) is nonsensical.
2. Show that if you have \(A \) you can make \(X \).
3. Therefore, \(A \) must not exist.
\[X = \text{halts? algorithm} \]
\[A = \text{evaluates-to-3? algorithm} \]

Undecidability Proof
Suppose we could define evaluates-to-3? that decides it. Then we could define halts?:
(define (halts? \(P \))
 (evaluates-to-3?
 '(lambda () (begin (\(P \)) 3))))
\textbf{if #t:} it evaluates to 3, so we know (\(P \)) must halt.
\textbf{if #f:} the only way it could not evaluate to 3, is if (\(P \)) doesn't halt. (Note: assumes (\(P \)) cannot produce an error.)

Hello-World Problem
Input: An expression specification \(E \)
Output: \textbf{true} if evaluating \(E \) would print out “Hello World!”; \textbf{false} otherwise.

Is the Hello-World Problem computable?
Uncomputability Proof

Suppose we could define \(\text{prints-hello-world?} \) that solves it. Then we could define \(\text{halts}? \):

\[
\text{(define (halts? P)} \text{ (prints-hello-world? (begin ((remove-prints P)) (print “Hello World!”)))})
\]

Proof by Contradiction

1. Show \(X \) is nonsensical.
2. Show that if you have \(A \) you can make \(X \).
3. Therefore, \(A \) must not exist.

\[
X = \text{halts? algorithm} \quad A = \text{prints-hello-world? algorithm}
\]

Charge

- Next week:
 - Monday: computability of virus detection, AllG problem; history of Object-Oriented programming
 - Wednesday, Friday: implementing interpreters
- After next week:
 - Scheme is very complicated (requires more than 1 page to define)
 - To have a convincing proof, we need a simpler programming model in which we can write paradox: Turing's model