Disk Level Virus Detection
Adrienne Felt
The Project

• Group members:
 – David Evans, Sudhanva Gurumurthi
 – Nate Paul

• Goal: a better way to catch viruses
 – Using virus behavior
 – Using the disk processor
How Norton AV works

- **String scanning**
 - Compare files against a database of known viruses

- **All files stored as bits on a disk**
 - `MOVE.W D4 D5 0011101000000100`

- **Signatures are strings of bits**
 - `011010100111010000000100100110`
Do virus scanners work?

- Norton Anti-Virus detection rates
 - WildList viruses: 100%
 - Zoo threads: 97%
 - Heuristic detection:
 - 1-month-old signatures: 22%
 - 2-month-old signatures: 8%
 - Outbreak response time: 10-12 hrs

From AV-test.org, an independent testing agency. Published in PC Mag.
"Morphing" viruses

- Change their own code between generations
- For example:
 - $x = x+1$
 - $a = x$
 - $a = a + 1$
 - $x = a$
- Now it won’t match the signature!
 - $\ldots00110011000001000111011000100\ldots$
 - $\ldots00100001011001001000011000010\ldots$
Our solution

• Behavior-based detection
 – Static vs. dynamic approach
 – Harder to change actions than code

• Watch behavior using disk processor
 – Viruses access files
 – Disk processor sees all reads/writes
1. User opens a file
2. Operating system asks for data
3. Disk processor retrieves the data
4. Data given to the OS
5. Anti-virus scanner
1. User opens a file

2. Operating system asks for data

3. Disk processor retrieves the data

3.5 Disk processor watches for viruses

4. Data given to the OS

Adrienne Felt • Disk Level Virus Detection
My research

• **Goal**: show that idea is feasible
 – Create “low-level” behavioral signatures
 – Difficult-to-detect viruses

• Experimental overview
 – Run the viruses
 – Record their behavior
 – Look for patterns
Experimental model

- **Future disk processors**
 - File names, opens, closes, offsets
- **Current disk processors**
 - Reads, writes, block numbers

1. Virus accesses a file
2. OS asks for data
3. Disk processor retrieves the data
4. Data given to the OS
Disk requests -> signatures

READ 1636.1672 14:27:20:984 <NO NAME>
 block= 530 ## 5É~Éƒ <E_RtlCreateActivationContextSXS:
 %s…

WRITE 1636.1672 14:27:20:984 EFISHNC.EXE
 block= 15 ## <@KERNEL32.dllUSER32.dllExitProcessWriteProce…

• Can see behavior from these requests!
 – Use “goat” files to make it clearer
 – Run lots of traces
 – Patterns emerge
What makes a virus a virus?

- Self-replicating program
- Adds its own code to the host’s programs
- Destroys data
- Annoys the user

- Can we tell this apart from user behavior?
Two types of signatures

- General behavior signatures
 - Viruses like executables
 - Change header information

- Virus-specific signatures
 - Characteristic virus behavior
 - Meant for a single or small number of viruses
Testing & refining signatures

• False positives
 – Detecting a user application as a virus
 – This is really bad

• False negatives
 – Not detecting a virus
 – This is bad too
My current work

- Looking for patterns in virus string databases
- There are many similar viruses
 - Can we take advantage of this?
 - aaa and aaaaaaaaa
Questions?

- Disk level virus detection
 - Behavioral signatures composed of disk requests
 - Based on intrinsic virus properties
 - General and specific signatures

- My thesis
 - Finding patterns in virus signatures