
1

cs205: engineering software
university of virginia fall 2006

Introducing

Java

David Evans
www.cs.virginia.edu/cs205

Don’t forget to email your registration survey –
if you haven’t yet, please do it today

2cs205: engineering software

Course Announcements

• Assistant Coaches:

Drew Abott and Dan Marcus

–Lab hours: after class today, Sunday 7-
8:30pm

• Office Hours

–Posted time conflicts with cs202

–New time is 10:30-noon on Thursdays

–My door is almost always open – feel free
to stop by outside of office hours

3cs205: engineering software

Why so many
programming languages?

4cs205: engineering software

Fundamental Differences

• All equivalently powerful!

– Universal languages: all capable of simulating
each other

• Fundamental differences

– Expressiveness: how easy it is to describe a
computation

– “Truthiness”: likelihood that a program means
what a programmer things it means

– Safeness: impact of programmer mistakes

• There is usually a conflict between
expressiveness and truthiness/safeness

5cs205: engineering software

Pragmatic Differences

• Performance of available compilers,
interpreters

• Tools available

• Libraries

• Portability

• Availability/cost of programmers

6cs205: engineering software

What is Java?

A. Island in Indonesia known for coffee
and volcanoes

B. A Programming Language (Java)

C. A Portable Low-Level Language (JVML)

D. A Platform (JavaVM)

E. A (semi-)successful marketing strategy

– JavaScript is not related to Java or Java

F. All of the above

2

7cs205: engineering software

Java History
• 1991: “Stealth Project” formed at Sun

– Computing for consumer electronics market

• James Gosling tasked with selecting a
programming language for project

– Started with C++, but found inadequate

• In later classes, we’ll talk about why

– Developed extensions and subtractions that led
to new language “Oak”

• 1993: Web arrives

• 1995: Sun releases HotJava browser and
Java PL, Netscape incorporated into browser

8cs205: engineering software

Buzzword Description

“A simple, object-oriented,
distributed, interpreted,
robust, secure, architecture
neutral, portable, high-
performance, multithreaded,
and dynamic language.”

[Sun95]Later in the course, we will
discuss how well it satisfies

these “buzzwords”.

9cs205: engineering software

Non-Buzzword Description
• Java sacrifices expressiveness for safety
and “truthiness”

– A Java program is ~5x larger than the
corresponding Scheme or Python program

• Java sacrifices performance for safety and
“truthiness”

– A Java program is ~2x slower than the
corresponding C program (but 5x faster than the
corresponding Scheme/Python program)

Caveat: these numbers are “guesses” and gross simplifications.
Real numbers depend on the program (and programmer!).

10cs205: engineering software

Java Programming Language

• Syntax

–Similar to C++

–Designed to be easy for C and C++
programmers to learn

• Semantics (what programs mean)

–Similar to Scheme

–Designed to make it easier to reason
about properties of programs

11cs205: engineering software

Programming Systems

Scheme Interpreter

Scheme Program

C++ Compiler

C++ Program

Machine

Object Files

12cs205: engineering software

• Portability

– If you can implement a Java
VM on your machine, then
you can run all Java programs

• Security

– A VM can limit what programs
can do to the real machine

• Simplicity

– VM instructions can be simpler
than machine instructions

Java VM

Java Compiler

Java Program

Java Virtual Machine

.class Files

Machine

Why use a virtual machine?

.java Files

3

13cs205: engineering software

Programming in Java

• Program is composed of classes

• A class:

–Defines a new datatype

–Defines methods and state associated
with that datatype

• We call a value of a class datatype
an object

–Objects package state and code

14cs205: engineering software

// CS205 Fall 2006

// CellState.java

public class CellState {
// OVERVIEW: A CellState is an immutable object that represents

// the state of a cell, either alive or dead.

private boolean alive;

private CellState(boolean isalive)

// EFFECTS: Initializes this to alive if isalive is true,
// otherwise initializes this to the dead state.

{
this.alive = isalive;

}

...

Comments: // to end of line

instance variable: state of this

object

c
o
n
s
tr
u
c
to
r

A Java Class

15cs205: engineering software

Types

• Every entity in a Java program has a
type

–Primitive types: int, char, boolean, etc.

–Object types: all classes

• Variables are declared with a type

• Compiler checks and requires type
correctness

boolean alive;
CellState state; // in Cell.java

16cs205: engineering software

// CS205 Fall 2006

// CellState.java

public class CellState {
// OVERVIEW: A CellState is an immutable object that represents

// the state of a cell, either alive or dead.

private boolean alive;

private CellState(boolean isalive)

// EFFECTS: Initializes this to alive if isalive is true,
// otherwise initializes this to the dead state.

{
this.alive = isalive;

}

...

Visibility Modifiers

public: any code can
read and modify
private: only accessible
inside class

How do these help manage complexity?

17cs205: engineering software

private CellState(boolean isalive)

// EFFECTS: Initializes this to alive if isalive is true,
// otherwise initializes this to the dead state.

static public/* nonnull */CellState createAlive()

// EFFECTS: Returns an alive cell state.
{

return new CellState(true);
}

static public/* nonnull */CellState createDead()

// EFFECTS: Returns a dead cell state.
{

return new CellState(false);
}

public Color getColor()
// EFFECTS: Returns the display color for this state

{
if (alive) return Color.green;
else return Color.white;

}

18cs205: engineering software

ExtremeLifeCell Class
public class ExtremeLifeCell extends Cell {

public CellState getNextState()
// EFFECTS: Returns the next state for this cell.
// The next state will be alive if this cell or any of its neighbors is currently alive.

{
Enumeration<SimObject> neighbors = getNeighbors();

while (neighbors.hasMoreElements()) {
SimObject neighbor = neighbors.nextElement();

if (neighbor instanceof Cell) {
Cell cell = (Cell) neighbor;
if (cell.isAlive()) {

// If the cell has at least one neighboring cell that is alive, this cell becomes alive.
return CellState.createAlive();

}
}

}
// No alive neighbor found, next state is current state
return getState();

}
}

All this code is
needed to walk
through the list
of neighbors!

Hint: you probably will want
the same code for ConwayLifeCell

4

19cs205: engineering software

Charge

• Problem Set 1 (Due Monday)

–Lots of new concepts, but only a few lines
of code

–You are not expected to understand
everything in the provided code (yet)

–Take advantage of scheduled lab hours:

• Now

•Sunday, 7-8:30pm

