¢s205: engineering software
university of virginia

Validation

@ k! FERAR

David Evans
www.cs.virginia.edu/cs205

fall 2006

Dictionary Definition

val-i-date
1. To declare or make legally valid.

2. To mark with an indication of
official sanction.

3. To establish the soundness of;
corroborate.

Can we do any of these with software?

€$205: engineering software

Java’s License

READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED
SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY "AGREEMENT")
CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA

PACKAGE. BY OPENING THE SOFTWARE MEDIA PACKAGE, YOU
AGREE TO THE TERMS OF THIS AGREEMENT. IF YOU ARE
ACCESSING THE SOFTWARE ELECTRONICALLY, INDICATE YOUR
ACCEPTANCE OF THESE TERMS BY SELECTING THE "ACCEPT"
BUTTON AT THE END OF THIS AGREEMENT. IF YOU DO NOT
AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE UNUSED
SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR,
IF THE SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE
"DECLINE" BUTTON AT THE END OF THIS AGREEMENT.

€5205: engineering software

Java’s License

5. LIMITATION OF LIABILITY. TO THE
EXTENT NOT PROHIBITED BY LAW, IN NO
EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY LOST REVENUE, PROFIT OR
DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED REGARDLESS
OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO THE USE OF OR
INABILITY TO USE SOFTWARE, EVEN IF SUN
HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. ..

€5205: engineering software

Java’s License

2. RESTRICTIONS. ... Unless
enforcement is prohibited by applicable
law, you may not modify, decompile, or
reverse engineer Software. You
acknowledge that Software is not
designed, licensed or intended for use
in the design, construction, operation or
maintenance of any nuclear
facility. Sun disclaims any express or
implied warranty of fithess for such
uses.

€$205: engineering software

Software Validation

¢ Process designed to increase our
confidence that a program works as
intended

e For complex programs, cannot often
make guarantees
e This is why typical software licenses

don’t make any claims about their
program working

€s205: engineering software

Increasing Confidence

e Testing

—-Run the program on set of inputs and
check the results

e Verification
—-Argue formally or informally that the
program always works as intended
e Analysis
- Poor programmer’s verification:

examine the source code to increase
confidence that it works as intended

€s205: engineering software 7

Testing and Fishing

Using some
successful tests to
conclude that a
program has no
bugs, is like
concluding there are
no fish in the lake =~
because you didn't S
catch one! :

€$205: engineering software

Exhaustive Testing

e Test all possible inputs

e PS1: 50x50 grid, all cells can be

either dead or alive before starting
22500 _

7365517592586 8149833770853573:
4333702457749526057760309227891351617765651907310068780236464694043316236562146724416478591 131 3325
9372911122158018053174923277751567996989907514221396911799487:

1 160208877 90188523 3903@203
2188892386 11984822 72240377
2170223999144146602618575265150293647228091 156952 4

279671872605285: 130702047998; 749356321 67 176585826750271589400788772725007

But that’s not all: all possible start stop step clicks,
different platforms, how long to you need to run it, etc.

€s205: engineering software 9

Selective Testing

e We can't test everything, pick test
cases with high probability of finding
flaws

e Black-Box Testing: design tests
looking only at specification

e Glass-Box Testing: design tests
looking at code

- Path-complete: at least one test to
exercise each path through code

€5205: engineering software

10

Black-Box Testing

public CellState getNextState ()
// MODIFIES: this
// EFFECTS: Returns the next state for this cell. If a cell is currently
// dead cell and has three live neighbors, then it becomes a live cell.
/| If a cell is currently alive and has two or three live neighbors it
// remains alive. Otherwise, the cell dies.

Test all paths through the specification

cs205: engineering software 11

public CellState getNextState ()
// MODIFIES: this
// EFFECTS: Returns the next state for this cell. If a cell is currently

/] If a cell is currently alive and has two or three live neighbors it
// remains alive. Otherwise, the cell dies.

// dead cell and has three live neighbors, then it becomes a live cell.

Test all paths through the specification:
1. currently dead, three live neighbors
currently alive, two live neighbors
currently alive, three live neighbors
currently dead, < 3 live neighbors
currently dead, > 3 live neighbors
currently alive, < 2 live neighbors
currently alive, > 3 live neighbors

NouAWwN

€s205: engineering software

12

Black-Box Testing

public CellState getNextState ()
// MODIFIES: this
// EFFECTS: Returns the next state for this cell. If a cell is currently
/| dead cell and has three live neighbors, then it becomes a live cell.
/] If a cell is currently alive and has two or three live neighbors it
// remains alive. Otherwise, the cell dies.

Test all (7) paths through the specification
Test boundary conditions

1. all neighbors are dead

2. all neighbors are alive

3. cell is at a corner of the grid

4. cell is at an edge of the grid

Glass-Box Testing

public CellState getNextState()

int countalive = 0;
Enumeration<SimObject> neighbors = getNeighbors();
while (neighbors.hasMoreElements()) {

SimObject neighbor = neighbors.nextElement();

if (neighbor instanceof Cell) {

Cell cell = (Cell) neighbor;
if (cell.isAlive()) { countalive++; } | HOW many paths are

there through this code?

if (countalive == 3) {
return CellState.createAlive ();
} else if (getState ().isAlive () && countalive == 2) {
return CellState.createAlive ();
} else { return CellState.createDead (); }

€s205: engineering software 13

€5205: engineering software

14

Path-Complete Testing

¢ Insufficient
- Often, bugs are missing paths
e Impossible
- Most programs have an infinite number
of paths
—-Loops and recursion
e Test with zero, one and several iterations
—-Branching
e Can test all paths

How many paths?

if (countalive == 3) {
return CellState.createAlive ();
} else if (getState ().isAlive () && countalive == 2) {
return CellState.createAlive ();
}else{
return CellState.createDead ();
}
}

€5205: engineering software 15

€5205: engineering software

16

Testing Recap

¢ Testing can find problems, not to prove
your program works
- Since exhaustive testing is impossible,
select test cases with maximum
probability of finding bugs
- A successful test case is one that reveals a
bug in your program!
e Typically at least 40% of cost of
software project is testing, often ~80%
of cost for safety-critical software

Quizzing

cs205: engineering software 17

€s205: engineering software

18

Testing Recap

e Testing can find problems, but can't
prove your program works
- Since exhaustive testing is impossible,
select test cases with maximum
probability of finding bugs
- A successful test case is one that reveals
a bug in your program!
o If we can't test all possible paths
through a program, how can we
increase our confidence that it works?

€s205: engineering software

19

Hopelessness of Analysis

It is impossible to correctly

determine if any interesting property
is true for an arbitrary program!

The Halting Problem: it is
impossible to write a
program that determines if
an arbitrary program halts.

€5205: engineering software

Charge

e Next class:
-ps2 hints

- Exceptions, programming defensively

€$205: engineering software

23

Analysis

e Make claims about all possible paths
by examining the program code
directly, not executing it

¢ Use formal semantics of programming
language to know what things mean

e Use formal specifications of
procedures to know that they do

€5205: engineering software

20

Compromises

e Use imperfect automated tools:

- Accept unsoundness and incompleteness

- False positives: sometimes an analysis tool will
report warnings for a program, when the
program is actually okay (unsoundness)

- False negatives: sometimes an analysis tool
will report no warnings for a program, even
when the program violates properties it checks
(incompleteness)

¢ Use informal reasoning

e Design programs to modularize
reasoning

€s205: engineering software 22

