
1

cs205: engineering software
university of virginia fall 2006

Data
Abstraction

David Evans
www.cs.virginia.edu/cs205

2cs205: engineering software

Managing Complexity

• Modularity

–Divided problem into procedures

–Used specifications to separate what
from how

• A big program can have thousands of
procedures

–How can we group them into modules?

3cs205: engineering software

Abstract Data Types

• Separate what you can do with data
from how it is represented

• Client interacts with data through
provided operations according to
their specifications

• Implementation chooses how to
represent data and implement its
operations

4cs205: engineering software

Data Abstraction in Java

• A class defines a new data type

• Use private instance variables to
hide the choice of representation

– private declarations are only visible
inside the class

5cs205: engineering software

Up and Down

Abstract Type

Concrete Representation

class implementation

clients

d
o

w
n u

p

The representation of an abstract data type
is visible only in the class implementation.

Clients manipulate an abstract data type by
calling its operations (methods and constructors)

6cs205: engineering software

Cell State Representation

private boolean alive;

public boolean isAlive () { return alive; }

Abstract Type

Concrete Representation

class implementation

clients

d
o

w
n u

p

CellState cs.isAlive ()

2

7cs205: engineering software

Advantages/Disadvantages

- More code to write and maintain

- Run-time overhead (time to call
method)

+ Client doesn’t need to know about
representation

+ Suppose we want to add more states
(e.g., question 2)

8cs205: engineering software

Set Example (ps2)

• Set abstract data type: represent a
set of objects

• Operations:

–Create an empty set

–Mathematical set operations: add,
contains, size, remove, union

9cs205: engineering software

Type Parameters

• We want to have sets of different
types of objects

• How should we declare the Set
methods?

public boolean add(?? elem)

public boolean contains(?? elem)

public ?? choose()

We don’t want just one Set datatype.
We want different Sets for different element types.

10cs205: engineering software

Generic Datatype

public class Set<T> {
...
public boolean add(T el)
public T choose()
public boolean contains(T el)
...

} Note: Java did not support generic
datatypes until version 1.5 (this is
why the book doesn’t use them)

11cs205: engineering software

Creating Specific Types
public class Set<T> {
...
public boolean add(T el)
public T choose()
public boolean contains(T el)
...

} public class Set<String> {
...
public boolean add(String el)
public String choose()
public boolean contains(String el)
...

}

Set<String>

12cs205: engineering software

Abstract Data Type Specifications

• Overview: what the type represents

–Mutability/Immutability

A Set is a mutable, unbounded set of objects
of type T.

–Abstract Notation

A typical Set is { x1, …, xn }.

• Operations: procedural specifications
for each operation (public methods and
constructors); use the abstract
notation introduced in overview.

3

13cs205: engineering software

Set Specification
public class Set<T> {
OVERVIEW: A Set is a mutable, unbounded set of objects of

type T. A typical Set is {x_1, ..., x_n }.

public Set()
EFFECTS: Initializes this to an empty set: { }.

public boolean add(T el)
MODIFIES: this
EFFECTS: Adds el to the elements of this:

thispost = thispre U { el }
Returns true iff el was not an element of thispre.

14cs205: engineering software

contains

EFFECTS: Checks if el is an element of this
and returns true if it is.

EFFECTS: Returns true iff el is an
element of this.

EFFECTS: Returns el ∈ this.
EFFECTS: Returns el isIn this.

15cs205: engineering software

union

public void union(Set<T> t)

MODIFIES: this
EFFECTS: Adds the elements of t to this.

MODIFIES: this
EFFECTS: this_post = this_pre ∪ t

Specifications should be declarative (what the
outcome is), not operational (how it does it).

16cs205: engineering software

Implementing
Abstract Data Types

17cs205: engineering software

Choosing a Representation
• Need a concrete data representation to
store the state

–Think about how it maps to abstract state

–Think about how methods will be
implemented

• A good representation choice should:

–Enable straightforward implementations of
as many methods as possible

–Allow performance-critical methods to be
implemented efficiently

18cs205: engineering software

Set Representation

• Option 1: private T [] rep;

–Recall Java arrays are bounded

–Easy to implement most methods, hard
to implement insert

• Option 2: private Vector<T> rep;

– Easy to implement all methods

– Performance may be worse than for array

4

19cs205: engineering software

Implementing Set
public class Set<T> {
// OVERVIEW: Sets are unbounded, mutable sets of elements of type T.

// A typical Set is {x1, ..., xn}

// Representation:

private Vector rep;

public StringSet () {
// EFFECTS: Initializes this to be empty: { }

rep = new Vector ();
}

public void insert (String s) {

// MODIFIES: this
// EFFECTS: Adds s to the elements of this:

// this_post = this_pre U { s }
rep.add (s);

}

Could this implementation
of insert be correct?

20cs205: engineering software

It depends…

public int size () {
// EFFECTS: Returns the number of elements in this.
Set<T> unique = new Set<T> ();
for (T el : rep) {
if (!unique.isIn (el)) {
unique.add (current);

}
}
return unique.rep.size ();

}

21cs205: engineering software

Is it correct?

public int size () {
// EFFECTS: Returns the number of
// elements in this.
return rep.size ();

}

public void insert (String s) {
if (!contains (s)) rep.add (s);

}

22cs205: engineering software

Reasoning About Data Abstractions

• How can we possibly implement data
abstractions correctly if correctness
of one method depends on how other
methods are implemented?

• How can we possibly test a data
abstraction implementation if there
are complex interdependencies
between methods?

23cs205: engineering software

What must we know to know if
size is correct?

This implementation is correct only if
we know the rep does not contain
duplicates

public int size () {
// EFFECTS: Returns the number of
// elements in this.
return rep.size ();

}

24cs205: engineering software

To Reason about Operations

• We need to know:

• How the concrete rep maps to
abstract values: Abstraction
Function

• What values of the concrete rep are
valid: Representation Invariant

5

25cs205: engineering software

Rep Invariant

• Predicate that all legitimate objects
of the ADT must satisfy

I: C → boolean

• Helps us reason about correctness of
methods independently

–Prove all objects satisfy the invariant
before leaving the implementation code

–Assume all objects passed in satisfy the
invariant

26cs205: engineering software

Reasoning with Rep Invariants

REQUIRES: Rep Invariant is true for this (and
any other reachable ADT objects)

EFFECTS: Rep Invariant is true for all new and
modified ADT objects on exit.

Every public datatype operation
implicitly includes these preconditions
and postconditions.

27cs205: engineering software

Rep Invariant for Set
public class Set {
// Representation:
private Vector<T> rep;

// RepInvariant (c) = c contains no duplicates

or
// RepInvariant (c) =
// forall i, j: rep[i].equals(rep[j])
// only when i == j

28cs205: engineering software

Implementing Insert?

public void insert (String s) {
// MODIFIES: this
// EFFECTS: Adds s to the elements of this:
// this_post = this_pre U { s }
rep.add (s);

}

Not a correct implementation:
after it returns this might not
satisfy the rep invariant!

29cs205: engineering software

Implementing Insert

public void insert (String s) {
// MODIFIES: this
// EFFECTS: Adds s to the elements of this:
// this_post = this_pre U { s }
if (!contains (s)) { rep.add (s); }

}

Possibly correct implementation:
we need to know how to map rep
to abstraction notation to know if

this_post = this_pre U { s }

30cs205: engineering software

Abstraction Function

• The Abstraction Function maps a
concrete state to an abstract state:

AF: C → A

Function from concrete
representation to the abstract
notation introduced in overview
specification.

What is the range of the Abstraction Function?

Range is concrete states for which rep invariant is true

6

31cs205: engineering software

Abstraction Function for Set

public class Set<T> {

// OVERVIEW: Sets are unbounded,

// mutable sets of objects of type T.

// A typical Set is {x1, ..., xn}

// Representation:

private Vector<T> rep;

// AF (c) =
// { AFT (c.rep.elementAt(i))

| 0 <= i < c.rep.size () }

32cs205: engineering software

Correctness of Insert

public void insert (String s) {
// MODIFIES: this
// EFFECTS: Adds s to the elements of this:
// this_post = this_pre U { s }
if (!contains (s)) { rep.add (s); }

}

Use abstraction function to show if
add implements its specification, then
AF(rep_post) = AF(rep_pre) U {AFString(s)}

33cs205: engineering software

Reality Check
• Writing abstraction functions, rep
invariants, testing code thoroughly,
reasoning about correctness, etc. for a big
program is a ridiculous amount of work!

• Does anyone really do this?
– Yes (and a lot more), but usually only when its
really important to get things right:

• Cost per line of code:
– Small, unimportant projects: $1-5/line

– WindowsNT: about $100/line

– FAA’s Automation System (1982-1994):
$900/line

34cs205: engineering software

Charge
• PS3: out today, due next Monday

–Reason about data types using
abstraction functions and rep invariants

– Implement the DirectedGraph abstract
data type you used in PS2

• Wednesday: Quiz 2

–Mostly on data abstraction

–Chapter 5 and lectures

–Maybe a question or two on testing

