

Collaboration Policy - Read Carefully: For this problem set, you may work alone or with one other student in the
class. If you work with another student, you should both participate fully in all parts of the assignments and turn in
one assignment with both of your names on it. Either way, feel free to ask other students for help and offer help to
other students.

Purpose

� Learn to reason about and develop good procedural specifications.
� Learn to use an abstract data type by reading its specification.
� Think about how to test a procedure.

Reading: read Chapters 3 and 4, Chapter 5 through section 5.2, Chapter 9, and
Chapter 10 through 10.2.

This assignment is longer than PS1 and you have over a week to complete it. Please don't wait to get started. You
are strongly encouraged to take advantage of the scheduled lab hours in Small Hall (Sundays, 7-8; Mondays, 6-7;
and Thursdays, 5-6).

Specifying Procedures

It is necessary for technical reasons that these warheads be stored upside down, that is, with the top at the bottom and the bottom
at the top. In order that there be no doubt as to which is the bottom and which is the top, for storage purposes, it will be seen that

the bottom of each warhead has been labeled 'TOP'.
Instructions accompanying a shipment of ballistic missiles from British Admiralty (reported in The Humus Report)

For the next question, consider these two specifications for the sort procedure:

Problem Set 2

Procedural Abstraction and Using Abstract
Datatypes

Out: 30 August
Due: Friday, 8 September

(beginning of class)

A. From the Java 2 Platform API documentation
(java.util.Arrays):

public static void sort(int[] a)

Sorts the specified array of ints into
ascending numerical order. The
sorting algorithm is a tuned
quicksort, adapted from Jon L.
Bentley and M. Douglas McIlroy's
"Engineering a Sort Function",
Software-Practice and Experience,
Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n)
performance on many data sets that
cause other quicksorts to degrade to
quadratic performance.

Parameters:
 a - the array to be sorted.

B. From the textbook (p.46):

public static void sort(int[] a)

MODIFIES: a

EFFECTS: Rearranges the elements
of a into ascending order.

 e.g., if a = [3, 1, 6, 1],

a_post = [1, 1, 3, 6]

Page 1 of 9cs205: Problem Set 2: Procedural Abstraction and Using ADTs

8/30/2006http://www.cs.virginia.edu/cs205/ps/ps2/

1. Describe three advantages of specification B over specification A.

2. Describe one scenario where specification A is more useful.

Consider the histogram prodecure defined (but not specified!) below:

public static int [] histogram (int [] a)

// unspecified

{

 int maxval = 0;

 for (int i = 0; i < a.length; i++) {

 if (a[i] > maxval) {

 maxval = a[i];

 }

 }

 int histo [] = new int [maxval + 1];

 for (int i = 0; i < a.length; i++) {

 histo[a[i]]++;

 }

 return histo;

}

For example,

 int [] test = { 1, 2, 3, 4, 6, 4, 3, 3, 0 } ;

 int [] hist = histogram (test);

the value of hist will be [1, 1, 1, 3, 2, 0, 1].

3. Write a complete, declarative specification of histogram. Your specification should be enough

for a client to safely use the implementation provided above.

4. Write an alternative specification for the histogram procedure that places less burden on the

client by using exceptions. What are the advantages and disadvantages of this specification compared
to your answer to question 3?

5. Write an alternative specification for the histogram procedure that is total. A client should be

able to pass any array of integers into this procedure and obtain a meaningful return value. What are
the advantages and disadvantages of this specification compared to your answers to questions 3 and 4?

Page 2 of 9cs205: Problem Set 2: Procedural Abstraction and Using ADTs

8/30/2006http://www.cs.virginia.edu/cs205/ps/ps2/

Dependency Graphs

Download
http://www.cs.virginia.edu/cs250/ps/ps2/ps2.zip to your

home directory and extract all files to your cs205\ directory (this will create

the cs205\ps2 subdirectory).

A dependency graph is a structure for showing dependencies between things. It could be used, for example, to
represent dependencies between events ("opening the book" has to happen before "reading the book") or between
modules (the table top depends on the table legs). For this assignment, you will read in a file that describes a set of
items and their dependencies, and produce a schedule in which each item is done only after all the items on which it
depends have already been completed.

The input file lists a task, followed by a number (which could represent the time required to complete the task),
followed by a list of tasks upon which this dask depends. Lines that start with a # are treated as commments.

For example,

Based on Figure 13.9 (p. 323) of textbook

Engine 30 { Comm.getDocs TitleTable Doc Query WordTable }

Comm.getDocs 50 { }

TitleTable 60 { Doc }

Doc 15 { }

Query 30 { WordTable }

WordTable 20 { Doc }

describes the dependency graph shown in Figure 13.9 of the textbook.

The first task listed in the file (Engine in the example) is the main task. The output of your program should be a

schedule of tasks that can be used to complete the main task, and the total time needed to complete it. For the
example there are many possible valid schedules; one valid output would be:

Schedule: [Comm.getDocs, Doc, TitleTable, WordTable, Query, Engine]

Completion time: 205

Note that every task in the list is preceeded by all tasks upon which it depends.

We have provided you with several abstract datatypes that you should find helpful in building your implementation.
Their specifications are at the end of this document. Note that we provide only the specifications and class file
implementations, not the source code. Your code should work with any implementations of these datatypes that
satisfy the provided specifications.

6. Impement the task schedule as described above. Your program should take a file name as input, and
output a valid schedule and completion time for completing the first task in the file. You
implementation should be total: no matter what input it is given, it should behave in a sensible way.
You should use procedural abstraction to avoid code duplication and enhance the clarity of your
implementation.

You should implement your program by creating a new TaskScheduler class (in the ps2 package)

with a main method.

Page 3 of 9cs205: Problem Set 2: Procedural Abstraction and Using ADTs

8/30/2006http://www.cs.virginia.edu/cs205/ps/ps2/

7. Write a specification for your program. Your specification should be total: it should describe what
the program does on all possible inputs.

8. Describe a testing strategy for an implementation of the task schedule program. Your answer should
include a list of black-box test cases, and any additional glass-box test cases.

9. How confident are you that your program will always work as intended? (Where "as intended"
means as you specified it in question 7, except if there are inputs that are not covered by your
specification it must behave as the course staff intended.) Express your answer as a bet of between 0
and 20 points. If the customer (grader) agrees that your program always works as intended, you get the
points. If not, you lose twice your bet. You should assume that your program will run with
implementations of the provided datatypes that satisfy their specifications, but not necessarily the same
implementations as were provided.

Turn-in Checklist: You should turn in your answers to questions 1-9 on paper
at the beginning of class on Friday, 8 September. Also, submit your
TaskSchedule.java code electronically by email to

evans@cs.virginia.edu.

Page 4 of 9cs205: Problem Set 2: Procedural Abstraction and Using ADTs

8/30/2006http://www.cs.virginia.edu/cs205/ps/ps2/

Specifications

DirectedGraph

The DirectedGraph datatype is a generic datatype, meaning it is parameterized with a type parameter. The

parameter T is the type of the nodes in the graph. For example, DirectedGraph<String> would denote a

DirectedGraph where the nodes has time String.

public class DirectedGraph<T>

 OVERVIEW: A DirectedGraph is a directed graph where

 V is a set of nodes (of type T), and E is a set of edges.

 Each edge is a pair (v1, v2), representing an edge

 from v1 to v2 in G.

 public DirectedGraph()

 EFFECTS: Creates a new, empty DirectedGraph: < {}, {} >

 public void addNode(T s) throws DuplicateException

 MODIFIES: this

 EFFECTS: If s is the name of a node in this, throws

 DuplicateNodeException. Otherwise, adds

 s to the nodes in this, with no adjacent nodes:

 G
post

 = < V
pre

 U { s }, Epre >

 public void addEdge(T s, T t) throws NoNodeException, DuplicateException

 MODIFIES: this

 EFFECTS: If s and t are not names of nodes in

 this, throws NoNodeException. If there is already an edge

 between s and t, throws DuplicateEdgeException.

 Otherwise, adds an edge between s and t to this:

 G
post

 = < V
pre

, E
pre

 U >

 public Set<T> getAdjacent(T s) throws NoNodeException

 EFFECTS: If s is not the name of a node, throws NoNodeException.

 Otherwise, returns an array of the nodes adjacent to s

 That is, returns the set of nodes

 { e | <s, e> is in E }

Page 5 of 9cs205: Problem Set 2: Procedural Abstraction and Using ADTs

8/30/2006http://www.cs.virginia.edu/cs205/ps/ps2/

Set

Another datatype we provide is Set, specified below (Set provides some additional methods, not specified here;

you should only need to use the specified methods):

public class Set<T> implements Iterable<T>, Collection<T> {

 OVERVIEW: A Set is a mutable, unbounded set of objects of type T.

 A typical Set is {x_1, ..., x_n }.

 public Set()

 EFFECTS: Initializes this to an empty set: { }.

 public Set(Set<T> s)

 EFFECTS: Initializes this to a set containing the same elements

 as the set s (a shallow copy).

 public boolean add(T el)

 MODIFIES: this

 EFFECTS: Adds el to the elements of this:

 this
post

 = this
pre

 U { el }

 Returns true iff el was not an element of

 this
pre

.

 public void union(Set<T> t)

 MODIFIES: this

 EFFECTS: this_post = this_pre U t

 public Iterator<T> iterator()

 REQUIRES: this must not be modified while the

 iterator is in use.

 EFFECTS: Returns an iterator that yields each element of

 this.

 public T choose()

 REQUIRES: this has at least one element

 EFFECTS: Returns an element of this.

 public boolean contains(Object el)

 EFFECTS: Returns true iff el is an element of this.

 public int size()

 EFFECTS: Returns the number of elements in this.

 public boolean isEmpty()

 EFFECTS: Returns true iff this has no elements.

 public boolean remove(Object el)

 MODIFIES: this

 EFFECTS: Removes el from this:

 this_post = this_pre - { el }

 Returns true iff el is in thispre

Page 6 of 9cs205: Problem Set 2: Procedural Abstraction and Using ADTs

8/30/2006http://www.cs.virginia.edu/cs205/ps/ps2/

Task

public class Task

 OVERVIEW: A typical Task is < name, time, dependencies > where

 name is the name of this task, time is the time it takes

 to complete it (in minutes), and dependencies is a set

 of tasks that must be completed before this task can

 be done.

public Task (String p_name, int p_time, String [] p_dependencies)

 EFFECTS: Initializes this to the task .

public String getName ()

 EFFECTS: Returns the name of this.

public int getTime ()

 EFFECTS: Returns the time of this.

public String [] getDependencies ()

 EFFECTS: Returns the dependencies of this.

public String toFullString ()

 EFFECTS: Returns a detailed string description of this.

public String toString ()

 EFFECTS: Returns a short string description of this (just the name).

Vector

You may also find the java.util.Vector datatype provided by the Java API useful. It provides an unbounded,

ordered array of objects. Like the Set datatype, it is generic and is parameterized with the type of the object

element. For example, Vector<String> denotes a vector of String objects.

The most useful java.util.Vector methods are specified below:

public class Vector<T> {

 OVERVIEW: A Vector is a mutable, unbouded, ordered collection of

 objects of type T. A typical Vector is [x_0, ..., x_n].

 public Vector()

 EFFECTS: Initializes this to an empty vector, [].

 public boolean add(T el)

 MODIFIES: this

 EFFECTS: Appends el to the end of this. Returns true.

 If this_pre = [x_0, ..., x_n], this_post = [x_0, ..., x_n, el].

 public void add(int index, T el)

 REQUIRES: 0 <= index <= size

 MODIFIES: this

 EFFECTS: Inserts el at location index in this.

 All elements before index are preseved unchanged, and

 all elements after index are advanced one position.

Page 7 of 9cs205: Problem Set 2: Procedural Abstraction and Using ADTs

8/30/2006http://www.cs.virginia.edu/cs205/ps/ps2/

 public boolean remove(Object el)

 MODIFIES: this

 EFFECTS: Removes the first occurance of an element whose value is

 equal to el (as matched using equals) from

 this. Returns true there is a matching occurance; otherwise,

 returns false and leaves this unchanged.

 public boolean contains(Object el)

 EFFECTS: Returns true iff an object with the same value as

 el is an element of the Vector as determined by equals.

The Vector class also implements the Iterator interface, so you can iterate through the elements of a Vector

(in order) using:

 Vector v = new Vector ();

 ...

 for (String el : v) {

 ... // Do something on each element

 }

Scanning

The Java API provides the java.util.Scanner class that makes it easier to process structured data. For this

problem set, the most important Scanner constructors and methods you are likely to need are specified below.

Note that Scanner objects can be created from both files and Strings. The specification below is quite vague — it
does not specify things like what a line separator is, what character sequences form valid integers, and what
separator characters are.

public class Scanner {

 OVERVIEW: A Scanner provides an abstract interface to textual data.

 A typical Scanner is < c1, c2, c3, ..., cn >

 ^

 where ci is the ith character in the text, and the cursor (^)

 points to the next character to process. A Scanner may be

 open or closed; a closed Scanner has no cursor.

 public Scanner(File source) throws FileNotFoundException

 EFFECTS: If source is not a readable file, throws FileNotFoundException.

 Otherwise, initializes this to a scanner containing the characters in

 the file source with the cursor pointing to the first character.

 public Scanner(String source)

 EFFECTS: Initializes this to a scanner containing the characters in

 the source string with the cursor pointing to the first character.

 public boolean hasNextLine()

 REQUIRES: this is an open scanner

 EFFECTS: Returns true iff there is another line in the text for

 this scanner.

 public String nextLine()

 REQUIRES: this is an open scanner and the cursor is not at the end

 of the input

Page 8 of 9cs205: Problem Set 2: Procedural Abstraction and Using ADTs

8/30/2006http://www.cs.virginia.edu/cs205/ps/ps2/

 MODIFIES: this

 EFFECTS: Returns the next line in the text (from the current cursor

 to either the end of the text or a line separator

 character). The line separator is not included in the

 return value. The text of the scanner is unchanged.

 The cursor advances to the position immediately

 following the line separator if one was reached, or

 to the end of the text.

 public boolean hasNextInt()

 REQUIRES: this is an open scanner

 EFFECTS: Returns true if the characters starting from the current

 cursor can be interpreted as a valid integer.

 public int nextInt()

 REQUIRES: this is an open scanner and the cursor points to a

 sequence of characters that can be interpreted as an integer.

 MODIFIES: this

 EFFECTS: Return the value of the next integer in the file (using

 as many characters as possible to form a valid integer), and

 advances the cursor to the position immediately following

 the input used.

 public boolean hasNext()

 REQUIRES: this is an open scanner

 EFFECTS: Returns true if this scanner has another token.

 public String next()

 REQUIRES: this is an open scanner with at least one more token.

 MODIFIES: this

 EFFECTS: Returns the next token in this scanner, and advances the

 cursor to point to the position immediately following the

 returned token. The next token is as many non-whitespace characters

 as can be read until the next whitespace character.

Page 9 of 9cs205: Problem Set 2: Procedural Abstraction and Using ADTs

8/30/2006http://www.cs.virginia.edu/cs205/ps/ps2/

