ENIAC

- Started 1943 – early electronic programmable computer
- Operational in 1946
- Computed ballistics tables
- 17,468 vacuum tubes
- 150 kW of power

Earlier Computers:
Z3 (Konrad Zuse) 1941
Colossus 1943

Directions for Getting 6

1. Choose any regular accumulator (ie. Accumulator #9).
2. Direct the Initiating Pulse to terminal 5E.
3. The initiating pulse is produced by the initiating unit's 50 terminal each time the Eniac is started. This terminal is usually, by default, plugged into Program Line 1-1 (described later). Simply connect a program cable from Program Line 1-1 to terminal 50 on this Accumulator.
4. Set the Repeat Switch for Program Control 5 to 6.
5. Set the Operation Switch for Program Control 5 to ADD.
6. Set the Clear-Correct switch to C.
7. Turn on and clear the Eniac.
8. Normally, when the Eniac is first started, a clearing process is begun. If the Eniac had been previously started, or if there are random neons illuminated in the accumulators, the "Initial Clear" button of the Initiating device can be pressed.
9. Press the "Initiating Pulse Switch" that is located on the Initiating device.
10. Stand back.

ENIAC number representation

- Decimal system
 - Ring of 36 vacuum tubes to store one digit (10 flip-flops to store 0-9)
 - Designed to emulate mechanical adding machine electronically
 - 20 accumulators (~registers), each stores 10-digits
- 5,000 cycles per second
 - Perform addition/subtraction between 2 accumulators each cycle

Binary Number Representations

- First presented by Gottfried Leibniz, 1705 ("Explication de l’Arithmétique Binaire")
- George Boole ("Boolean" logic), 1854
- Claude Shannon’s 1937 Master’s thesis: implemented Boolean algebra with switches and relays
- Used by Atanasoff-Berry Computer, Colossus and Z3

Binary Representation

\[b_{n-1}b_{n-2}b_{n-3}...b_2b_1b_0 \]

- Value \(= \sum b_i \cdot 2^i \) \[\begin{align*}
0 + 0 &= 0 \\
0 + 1 &= 1 \\
1 + 0 &= 1 \\
1 + 1 &= 0 \text{ carry 1}
\end{align*} \]

What should \(n \) be?
What is n?

- **Java:**
 - `byte`, `char` = 8 bits
 - `short` = 16 bits
 - `int` = **32 bits**
 - `long` = 64 bits
- **C:** implementation-defined
 - `int`: can hold between 0 and `UINT_MAX`
 - `UINT_MAX` must be at least 65535
 - $n \geq 16$, typical current machines $n = 32$
- **Python?**
 - n is not fixed (numbers work)

The Great Debate

- “Big Endian”: most significant **first** (lowest address)
 - $1000\ 0000\ 0000\ 0000 = 2^{15} = 32768$
- “Little Endian”: most significant **last** (highest address)
 - $1000\ 0000\ 0000\ 0000 = 2^{0} = 1$

Which is better?

Endianness

- Its a “religious” argument: names taken from Big-Endians and Little-Endians in *Gulliver’s Travels* who argued over which end of an egg to crack
- Different orderings problematic
 - Consider what `<<` means in C
 - big endian ~ divide by 2
 - little endian ~ multiply by 2
- Some architectures support both (“bi-endian”): PowerPC, DEC Alpha, IA/64
- Most Internet standards: big-endian

Other Kinds of Numbers

- Positive and Negative Integers
 - Sign Bit, Ones Complement, Twos Complement
 - Section this week
- Real numbers

Real Numbers

- $\frac{1}{3}$
- $\pi \\ 0.1$
- $3.333333333333... \times 10^{-1}$
- $\sqrt{2}$

Floating Point

Pentium II
IEEE Floating Point
Single Precision (32 bits)

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 30 23 22 0</td>
<td></td>
</tr>
</tbody>
</table>

Exponent values:
- 0 zeroes
- 1-254 exp + 127
- 255 infinities, NaN

Value = \((1 - 2^{\text{Sign}}) (1 + \text{Fraction})^{\text{Exponent} - 127}\)

Fraction

\[\text{Fraction} = \sum_{i=1}^{23} b_i / 2^i \]

Example

1/10 = 0.1 (Decimal)

What is this in binary?

\[
1/10 \approx 1/16 + 1/32 = 3/32
\]

\[
.2/32 = 2/320 \approx 1/256 + 1/512 = 3/512 = 1.875/320 = 0011001100110011...
\]

Patriot Missile

- Gulf War I
- Failed to intercept incoming Iraqi scud missile (Feb 25, 1991)
- 28 American soldiers killed

Even common decimals like 0.1 cannot be represented exactly!
Patriot Design
- Intended to operate only for a few hours
 - Defend Europe from Soviet aircraft and missile
- Four 24-bit registers (1970s design!)
- Kept time with integer counter: incremented every 1/10 second
- Calculate speed of incoming missile to predict future positions:
 \[\text{velocity} = \frac{\text{loc}_1 - \text{loc}_0}{\text{count}_1 - \text{count}_0} \times 0.1 \]
- But, cannot represent 0.1 exactly!

Floating Imprecision
- 24-bits:
 \[0.1 = \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{1}{2^{12}} + \frac{1}{2^{13}} + \frac{1}{2^{16}} + \frac{1}{2^{17}} + \frac{1}{2^{20}} + \frac{1}{2^{21}} \]
 \[= \frac{209715}{2097152} \]
 Error is 0.2/2097152 = 1/10485760
 One hour = 3600 seconds
 \[3600 \times \frac{0.2}{10485760} \times 10 = 0.0034s \]
 20 hours = 0.0687s
 Miss target! (137 meters)

Two weeks before the incident, Army officials received Israeli data indicating some loss in accuracy after the system had been running for 8 consecutive hours. Consequently, Army officials modified the software to improve the system's accuracy. However, the modified software did not reach Dhahran until February 26, 1991--the day after the Scud incident.

Better Floating Point: Use More Bits
- IEEE Double Precision (64 bits)
 \[
 \begin{array}{cc}
 \text{Exponent} & \text{Fraction} \\
 11 \text{ bits} & 52 \text{ bits}
 \end{array}
 \]
 Single Precision:
 \[0.1 = \frac{209715}{2097152} \]
 Error = 9.5*10^-8 (20 hours to miss target)
 Double Precision:
 \[0.1 = \frac{56294995342131}{562949953421312} \]
 Error = 3.608 *10^-16 (2,172,375,450 years to miss)

Better Floating Point (insurgent)
- IBM Floating Point (“Hexadecimal”)
 - Use more bits in fraction, fewer in exponent (7/24 and 7/56 instead of 8/23 and 11/52)
- Decimal Formats (IEEE 754d)
 - Naive: 1 decimal digit into 4 binary digits
 - Cowlishaw encoding:
 - Exact representation of decimals (e.g., 0.1)
 - 3 decimal digits (0-999) into 10 binary digits (0-1023) (24 wasted out of 1024)
 - Your graphics card uses this (if you have a good one)
 - 40B Floating Point Ops per second (3GHZ Pentium = 12B)

Smaller Floating Point
- 16-bit floating point representations
 - Minifloat: 1 sign, 5-bit exponent (-15), 10-bit mantissa
 - Range from 2.98×10^-8 to 65504
 - Your graphics card uses this (if you have a good one)
 - 40B Floating Point Ops per second (3GHZ Pentium = 12B)
High Dynamic Range
(Example from Paul Debevec's HDRShop)

8-bit integer color

16-bit float color

Charge

- If you have to worry about how numbers are represented, you are doing low-level programming
- Are there any high-level programming languages yet?
 - Java: only if you never use floating point numbers or integers bigger than 2,147,483,647 (can keep track of National Debt for about 23 hours)
 - Python: almost a “high-level language” (but still need to worry about floating point numbers)
 - Scheme (PLT implementation): is a “high-level” language (code used to calculate error values)

Code

; smarter implementation would compute these...
(define seq (list 4 5 8 9 12 13 16 17 20 21))
(define seq64 (list 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49))
(define (value seq)
 (if (null? seq) 0 (+ (/ 1 (expt 2 (car seq))) (value (cdr seq))))))

DrScheme Interactions

> (define onetenth (value seq))
> onetenth
2097152/2097152
> (define onetenth64 (value seq64))
> onetenth64
562949953421312/562949953421312
> (- .1 onetenth)
9.536743164617612e-008
> (- .1 onetenth64)
3.608224830031759e-016
> (* 20 3600 (- .1 onetenth))
0.00686645507852468
> (/ (* 20 3600 (- .1 onetenth)) (- .1 onetenth64))
190300008943384.617
> (/ (/ (/ (* 20 3600 (- .1 onetenth)) (- .1 onetenth64)) 24) 365)
2172375450.1389015