
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

http://www.cs.virginia.edu/cs216

Lecture 25

2UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Question 10

6454Review

182Instruction set

245.NET’s VM

389Randomized Algorithms

3712Graph and Network Algorithms

141Partner Assignment Algorithms

131Improved Tree Data Structures

Top 3FirstWe will discuss some Exam 2
questions today. We might do a
review Monday, but only if enough
good questions are sent by Sunday
afternoon.

3UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Question 10

6454Review

182Instruction set

245.NET’s VM

389Randomized Algorithms

3712Graph and Network Algorithms

141Partner Assignment Algorithms

131Improved Tree Data Structures

Top 3First

Close vote here…luckily there are
many interesting randomized graph
and network algorithms…

4UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Exam 2: Question 2

• In Class 16, we saw that the floating
point imprecision in representing 0.1
led to an error of 0.0034 seconds per
hour in the Patriot missile time
calculations. What clock tick unit
would maximize the error
accumulated per hour? What is the
error? This was the easiest question,

but no one got it right!

5UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Question 2

What is the smallest value the 24-bit
mantissa register can represent?

00000000000000000000001
2-1… 2-24

What if the clock tick is < 2-25 seconds?

Option 1: 0…01 = 2-24 (error > 2-25 per tick)
Option 2: 0…00 = 0 (error = tick length per tick)

So, error per hour is 1 hour!

6UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Is this possible?

•Modern Penium ~ 4GHz

–Clock tick = 1/4B s = 1/232

–27 times faster than we need!

2

7UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Question 4

• Explain two reasons why it is easier
to write a garbage collector for
Python than it is to write a garbage
collector for C?

8UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Mark and
Sweep

Stack

Bottom of Stack

“Duck”

“CATAG”

root: Species

name:

genome:String[]: args

ss: SpeciesSet

“in.spc”

els:

Garbage Collection

Top of Stack

active = all objects on stack
while (!active.isEmpty ())

newactive = { }

foreach (Object a in active)
mark a as reachable (non-garbage)

foreach (Object o that a points to)
if o is not marked

newactive = newactive U { o }

active = newactiveClass 12

9UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Question 9

• Consider modifying the x86 calling
convention to put the return value on
the top of the stack when a routine
returns instead of using EAX to hold
the return value. What are the
advantages and disadvantages of
this change?

10UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Where could it go?

parameter 3

parameter 2

parameter 1

return address

S
ta
ck
 G
ro
w
th ESP

C calling convention: state before ret

11UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Where could it go?

parameter 3

parameter 2

parameter 1

return address

S
ta
ck
 G
ro
w
th ESP

Modified calling
convention:
state before ret

result

Yikes! ret
expects [esp] to
be return address

12UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Puts it before RA

parameter 1

return address

S
ta
ck
 G
ro
w
th ESP

Implications:
Caller: must reserve
enough space on
stack to hold results

result

result

3

13UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Is this a good idea?

• Advantages:
–Frees up EAX for other things

–Allows longer return values
•Multiple results (Python)

• Return arrays, structures

• Disadvantages:
–Stack access can be a lot slower than
registers

– If caller uses result, it probably needs to
copy it into a register anyway

14UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Sample Programs

…

x = f(a);

y = g(b);

z = f(x + y);

…

x = f (g (h (a)))

…

Which code fragment could be
faster with the new convention?

15UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Randomized Algorithms

16UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Why use randomness?

• Avoid worst-case behavior:
randomness can (probabilistically)
guarantee average case behavior

• Efficient approximate solutions to
intractable problems

17UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Randomized Algorithm

Deterministic
Computer

Input Output

Random bits

www.lavarnd.org
(doesn’t use lava lamps
anymore)

18UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Types of Algorithms

• Monte Carlo

–Running time bounded by input size, but
answer may be wrong

–Decision problems: If there is no solution,
always returns “no”. If there is a solution,
finds it with some probability >= ½.

–Value problems: run for a bounded
number of steps, produce an answer that
is correct approximation with a bounded
probability (function of number of steps)

4

19UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Types of Random
Algorithms

• Las Vegas

–Guaranteed to produce correct answer,
but running time is probabilistic

• Atlantic City

–Running time bounded by input

–Can return either “yes” or “no”
regardless of correct answer. Correct
with probability >= 2/3.

How could this be useful?

20UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Determining π
0,1 1,1

1,00,0

Square = 1
Circle = π/4

The probability
a random point
in square is in
circle:

= π/4

π = 4 * points in circle/points

21UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Find π
def findPi (points):

incircle = 0
for i in range (points):

x = random.random ()
y = random.random ()
if (square (x - 0.5) + square (y - 0.5) \

< 0.25): # 0.25 = r^2
incircle = incircle + 1

return 4.0 * incircle / points

22UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Monte Carlo or Las Vegas?

23UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Results

n: 1 4.0 4.0 0.0
n: 2 2.0 4.0 4.0
n: 4 3.0 4.0 3.0
...
n: 64 3.0625 3.125 3.0625
...
n: 1024 3.16796875 3.13671875 3.1640625
...
n: 16384 3.12622070312 3.14038085938 3.1279296875
n: 131072 3.13494873047 3.14785766602 3.13766479492
n: 1048576 3.14015579224 3.14387893677 3.14112472534

If we wait long enough will it produce
an arbitrarily accurate value?

24UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Minimum Cut Problem

• Input: an undirected, connected
multigraph G = (V,E)

• Output: A cut (V1,V2 where V1∩∪ V2 = V

and V1 ∩ V2 = ∅) such that number of
edges between V1 and V2 is the fewest
possible.

Why might this be useful?
Equivalent: fewest edges that can be
removed to disconnect G.

5

25UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Minimum Cut

A

B

C

D

Size of the min cut must be no larger
than the smallest node degree in graph

26UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Internet Minimum Cut

June 1999 Internet graph, Bill Cheswick
http://research.lumeta.com/ches/map/gallery/index.html

27UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Randomized Algorithm

• While |V| > 2:

–Pick a random edge (x, y) from E

–Contract the edge:

• Keep multi-edges, remove self-loops

• Combine nodes

• The two remaining nodes represent
reasonable choices for the minimum
cut sets

28UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Analysis

• Suppose C is a minimum cut (set of
edges that disconnects G)

• When we contract edge e:

–Unlikely that e ∈ C

–So, C is likely to be preserved

What is the probability a randomly
choosen edge is in C?

29UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Analysis

• Is the final result a cut of G?

• What is the probability we find a
minimum cut?

30UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Random Edge in C?

• |C| must be ≤ degree of every node
in G

• How many edges in G:

|E| = sum of all node degrees / 2

≥ n |C| / 2

Probability a random edge is in C ≤ 2/n

6

31UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Iteration

• How many iterations?

• Probability for first iteration:

Prob(e1 ∉ C) ≥ 1 – 2/n

• Probability for second iteration:

Prob(e2 ∉ C | e1 ∉ C) ≥ 1 – 2/(n-1)

• ...

• Probability for last iteration:

Prob(en-2 ∉ C) ≥ 1 – 2/(n-(n-2-1)) ≥ 1 – 2/3

n - 2

32UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Probability of finding C?

≥ (1 – 2/n) * (1 – 2/(n – 1)) * (1 – 2/(n – 2)) ...

* (1 – 2/3)

= (n – 2 / n) * (n – 3/(n – 1)) * (n – 4/(n – 2))

* ...* (2/4) * (1/3)

= 2 / (n * (n – 1))

Probability of not finding C
= 1 – 2/(n*(n-1))

33UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Is this good enough?

Probability of not finding C on one trial:
≤ 1 – 2/(n*(n-1)) ≤ 1 – 2/n2

Probability of not finding C on k trials:
≤ [1 – 2/n2]k

If k = cn2,
Prob failure ≤ (1/e)c

Recall: lim (1 – 1/x)x = 1/e
x → ∞

34UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Charge

• Monday is last class: it will be mostly
review if enough good review
questions are sent in

• No section or Small Hall hours next
week

