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Question 10
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Top 3FirstWe will discuss some Exam 2 
questions today.  We might do a 
review Monday, but only if enough 
good questions are sent by Sunday 
afternoon.
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Close vote here…luckily there are 
many interesting randomized graph 
and network algorithms…
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Exam 2: Question 2

• In Class 16, we saw that the floating 
point imprecision in representing 0.1 
led to an error of 0.0034 seconds per 
hour in the Patriot missile time 
calculations. What clock tick unit 
would maximize the error 
accumulated per hour? What is the 
error? This was the easiest question,

but no one got it right!
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Question 2

What is the smallest value the 24-bit 
mantissa register can represent?

00000000000000000000001
2-1… 2-24

What if the clock tick is < 2-25 seconds?

Option 1: 0…01 = 2-24 (error > 2-25 per tick)
Option 2: 0…00 = 0 (error = tick length per tick)

So, error per hour is 1 hour!
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Is this possible?

•Modern Penium ~ 4GHz

–Clock tick = 1/4B s = 1/232

–27 times faster than we need!
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Question 4

• Explain two reasons why it is easier 
to write a garbage collector for 
Python than it is to write a garbage 
collector for C? 
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Mark and 
Sweep

Stack

Bottom of Stack

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

Garbage Collection

Top of Stack

active = all objects on stack
while (!active.isEmpty ()) 

newactive = { }

foreach (Object a in active) 
mark a as reachable (non-garbage)

foreach (Object o that a points to) 
if o is not marked

newactive = newactive U { o }

active = newactiveClass 12
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Question 9

• Consider modifying the x86 calling 
convention to put the return value on 
the top of the stack when a routine 
returns instead of using EAX to hold 
the return value. What are the 
advantages and disadvantages of 
this change? 
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Where could it go?

parameter 3

parameter 2

parameter 1

return address

S
ta
ck
 G
ro
w
th ESP

C calling convention: state before ret
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Where could it go?

parameter 3

parameter 2

parameter 1

return address

S
ta
ck
 G
ro
w
th ESP

Modified calling 
convention: 
state before ret

result

Yikes!  ret
expects [esp] to 
be return address
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Puts it before RA

parameter 1

return address

S
ta
ck
 G
ro
w
th ESP

Implications:
Caller: must reserve 
enough space on 
stack to hold results

result

result
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Is this a good idea?

• Advantages:
–Frees up EAX for other things

–Allows longer return values
•Multiple results (Python)

• Return arrays, structures

• Disadvantages:
–Stack access can be a lot slower than 
registers

– If caller uses result, it probably needs to 
copy it into a register anyway
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Sample Programs

…

x = f(a);

y = g(b);

z = f(x + y);

…

x = f (g (h (a)))

…

Which code fragment could be
faster with the new convention?
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Randomized Algorithms
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Why use randomness?

• Avoid worst-case behavior: 
randomness can (probabilistically) 
guarantee average case behavior

• Efficient approximate solutions to 
intractable problems
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Randomized Algorithm

Deterministic
Computer

Input Output

Random bits

www.lavarnd.org
(doesn’t use lava lamps
anymore)
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Types of Algorithms

• Monte Carlo

–Running time bounded by input size, but 
answer may be wrong

–Decision problems: If there is no solution, 
always returns “no”.  If there is a solution, 
finds it with some probability >= ½.

–Value problems: run for a bounded 
number of steps, produce an answer that 
is correct approximation with a bounded 
probability (function of number of steps)
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Types of Random 
Algorithms

• Las Vegas

–Guaranteed to produce correct answer, 
but running time is probabilistic

• Atlantic City

–Running time bounded by input

–Can return either “yes” or “no”
regardless of correct answer. Correct 
with probability >= 2/3.

How could this be useful?
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Determining π
0,1 1,1

1,00,0

Square = 1
Circle = π/4

The probability
a random point
in square is in 
circle:

= π/4

π = 4 * points in circle/points
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Find π
def findPi (points):

incircle = 0
for i in range (points):

x = random.random ()
y = random.random ()
if (square (x - 0.5) + square (y - 0.5) \

< 0.25):  # 0.25 = r^2
incircle = incircle + 1

return 4.0 * incircle / points
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Monte Carlo    or     Las Vegas?
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Results

n: 1    4.0     4.0     0.0
n: 2    2.0     4.0     4.0
n: 4    3.0     4.0     3.0
...
n: 64   3.0625  3.125   3.0625
...
n: 1024 3.16796875 3.13671875      3.1640625
...
n: 16384 3.12622070312   3.14038085938 3.1279296875
n: 131072     3.13494873047   3.14785766602 3.13766479492
n: 1048576      3.14015579224        3.14387893677   3.14112472534

If we wait long enough will it produce
an arbitrarily accurate value?
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Minimum Cut Problem

• Input: an undirected, connected 
multigraph G = (V,E)

• Output: A cut (V1,V2 where V1∩∪ V2 = V 

and V1 ∩ V2 = ∅) such that number of 
edges between V1 and V2 is the fewest 
possible.

Why might this be useful?
Equivalent: fewest edges that can be
removed to disconnect G.
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Minimum Cut

A

B

C

D

Size of the min cut must be no larger
than the smallest node degree in graph
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Internet Minimum Cut

June 1999 Internet graph, Bill Cheswick
http://research.lumeta.com/ches/map/gallery/index.html
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Randomized Algorithm

• While |V| > 2:

–Pick a random edge (x, y) from E

–Contract the edge:

• Keep multi-edges, remove self-loops

• Combine nodes

• The two remaining nodes represent 
reasonable choices for the minimum 
cut sets
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Analysis

• Suppose C is a minimum cut (set of 
edges that disconnects G)

• When we contract edge e:

–Unlikely that e ∈ C

–So, C is likely to be preserved

What is the probability a randomly
choosen edge is in C?
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Analysis

• Is the final result a cut of G?

• What is the probability we find a 
minimum cut?
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Random Edge in C?

• |C| must be ≤ degree of every node 
in G

• How many edges in G:

|E| = sum of all node degrees / 2

≥ n |C| / 2

Probability a random edge is in C ≤ 2/n
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Iteration

• How many iterations?

• Probability for first iteration:

Prob(e1 ∉ C) ≥ 1 – 2/n

• Probability for second iteration:

Prob(e2 ∉ C | e1 ∉ C) ≥ 1 – 2/(n-1)

• ...

• Probability for last iteration:

Prob(en-2 ∉ C) ≥ 1 – 2/(n-(n-2-1)) ≥ 1 – 2/3

n - 2
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Probability of finding C?

≥ (1 – 2/n) * (1 – 2/(n – 1)) * (1 – 2/(n – 2)) ...

* (1 – 2/3)

= (n – 2 / n) * (n – 3/(n – 1)) * (n – 4/(n – 2)) 

* ...* (2/4) * (1/3)

=  2 / (n * (n – 1))

Probability of not finding C 
= 1 – 2/(n*(n-1))
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Is this good enough?

Probability of not finding C on one trial: 
≤ 1 – 2/(n*(n-1)) ≤ 1 – 2/n2

Probability of not finding C on k trials: 
≤ [1 – 2/n2]k

If k = cn2, 
Prob failure ≤ (1/e)c

Recall: lim (1 – 1/x)x = 1/e
x → ∞
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Charge

• Monday is last class: it will be mostly 
review if enough good review 
questions are sent in 

• No section or Small Hall hours next 
week


