CS216: Program and Data Representation
University of Virginia Computer Science

Spring 2006 . DavidlExans Q uestion 10

| | We will discuss some Exam 2

|1 questions today. We might do a
p{review Monday, but only if enough
'c| good questions are sent by Sunday
R

—

afternoon.
.NET’s VM 5 24
Instruction set 2 18
Review (54 64
http://www.cs.virginia.edu/cs216 UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms
Question 10 Exam 2: Question 2

Close vote here...luckily there are
many interesting randomized graph
and network algorithms...

e In Class 16, we saw that the floating
point imprecision in representing 0.1

Impro led to an error of 0.0034 seconds per
Partner Assignment Algorithms = 4 hour in the Patriot missile time
Graph and Network Algorithms C; :; calculations. What clock tick unit
Randomized Algorithms = o would maximize the error
.NET's VM .

= accumulated per hour? What is the
Instruction set 2 18 > - - -
Review 54 64 €rrors< |This was the easiest question,

but no one got it right!

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 3 UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Question 2 Is this possible?

What is the smallest value the 24-bit .
mantissa register can represent? *Modern Penium 4GHz

- ick = = 32
00000000000000000000001 Clock tick = 1/4B s = 1/2
2. 2724 -27 times faster than we need!

What if the clock tick is < 2-25 seconds?

Option 1: 0...01 = 2-24 (error > 2-25 per tick)
Option 2: 0...00 = 0 (error = tick length per tick)

So, error per houris 1 hour!|

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 5 UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Question 4

e Explain two reasons why it is easier
to write a garbage collector for
Python than it is to write a garbage
collector for C?

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Question 9

¢ Consider modifying the x86 calling
convention to put the return value on
the top of the stack when a routine
returns instead of using EAX to hold
the return value. What are the
advantages and disadvantages of
this change?

Garbage Collection
Bottom of Stack
String[]: args genomes
root: Species ©/ <—
ss: SpeciesSet (o— m -“CATAG"
Top of Stack— -

active = all objects on stack
while ('active.isEmpty ())

}
foreach (Object a in active)

M a rk an d mark a as reachable (non-garbage)
foreach (Object o that a points to)
Sweep if 0 is not marked

newactive = newactive U {0 }
active =

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Where could it go?

return address

parameter 1

ESP

IMOID YoB3S

parameter 2

parameter 3

C calling convention: state before ret

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Where could it go?

result

return address

parameter 1

ESP

UIMOID 3BIS

parameter 2

parameter 3

Modified calling
convention:

Yikes! ret
expects [esp] to
be return address

state before ret

11

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

10

Puts it before RA

return address

result

result

parameter 1

ESP

UIMOID 5BIS

Implications:

Caller: must reserve
enough space on
stack to hold results

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

12

Is this a good idea?

e Advantages:
- Frees up EAX for other things
- Allows longer return values
e Multiple results (Python)
e Return arrays, structures
e Disadvantages:
- Stack access can be a lot slower than
registers
- If caller uses result, it probably needs to
copy it into a register anyway

13

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Randomized Algorithms

Sample Programs

X = f(a),;

x =f (g (h (a)))
y = g(b);
z=f(x+vy);

Which code fragment could be
faster with the new convention?

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 14

Why use randomness?

e Avoid worst-case behavior:
randomness can (probabilistically)
guarantee average case behavior

e Efficient approximate solutions to
intractable problems

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 15

16

Randomized Algorithm

Deterministic Output
Computer
!

Random bits

www.lavarnd.org
(doesn't use lava lamps

‘ A (ﬁ anymore)

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 17

Types of Algorithms

¢ Monte Carlo

-Running time bounded by input size, but
answer may be wrong

- Decision problems: If there is no solution,
always returns “no”. If there is a solution,
finds it with some probability >= .

-Value problems: run for a bounded
number of steps, produce an answer that
is correct approximation with a bounded
probability (function of number of steps)

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

18

Types of Random
Algorithms

e Las Vegas
- Guaranteed to produce correct answer,
but running time is probabilistic
¢ Atlantic City
-Running time bounded by input

- Can return either “yes” or “no”
regardless of correct answer. Correct
with probability >= 2/3.

How could this be useful?

Determining &
0,1 1,1

Square =1
Circle = n/4

The probability
a random point

in square is in
circle:

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 19

= n/4
0,0 1,0
T = 4 * points in circle/points
UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 20

Find &

def findPi (points):

incircle = 0

for i in range (points):

x = random.random ()

random.random ()
|f (square (x - 0.5) + square (y - 0.5) \

< 0.25): #0.25 =r"2

incircle = incircle + 1

return 4.0 * incircle / points

Monte Carlo or Las Vegas?

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 21

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 22

Results
n:1 4.0 4.0 0.0
n:2 20 4.0 4.0
n4 3.0 4.0 3.0
n 64 3.0625 3.125 3.0625

ni If we wait long enough will it produce

|an arbitrarily accurate value?
1 16384 3.126220/0312 3.14038085938 3.12/92968/5
:131072 3.13494873047 3.14785766602 3.13766479492
1048576 3.14015579224 3.14387893677 3.14112472534

233

Minimum Cut Problem

e Input: an undirected, connected
multigraph G = (V,E)

e Output: A cut (V,,V,whereV,uV,=V
and V, nV,=0) such that number of
edges between V, and V, is the fewest
possible.

Why might this be useful?
Equivalent: fewest edges that can be
removed to disconnect G.

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 23

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 24

Minimum Cut

Size of the min cut must be no larger
than the smallest node degree in graph

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 25

Internet Minimum Cut

SN
MR
A
{ k2
§

"

June 1999 Internet graph, Bill Cheswick
http://research.lumeta.com/ches/map/gallery/index.html

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 26

Randomized Algorithm

e While |V]| > 2:
- Pick a random edge (x, y) from E
- Contract the edge:
¢ Keep multi-edges, remove self-loops
e Combine nodes
e The two remaining nodes represent
reasonable choices for the minimum
cut sets

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 27

Analysis

e Suppose C is a minimum cut (set of
edges that disconnects G)

e When we contract edge e:
-Unlikely thatee C
-So, Cis likely to be preserved

What is the probability a randomly
choosen edge is in C?

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 28

Analysis

¢ Is the final result a cut of G?

e What is the probability we find a
minimum cut?

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 29

Random Edge in C?
e |C| must be < degree of every node
in G
e How many edges in G:

|E| = sum of all node degrees / 2
>nlCl/2

Probability a random edge is in C < 2/n

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 30

Iteration

e How many iterations? n-2

e Probability for first iteration:
Prob(e, & C)>1-2/n

¢ Probability for second iteration:
Prob(e, & Cle; & C) > 1-2/(n-1)

o e

¢ Probability for last iteration:
Prob(e, , & C) > 1 —2/(n-(n-2-1)) > 1 - 2/3

Probability of finding C?

>2(1=-2m)*A=2/(n-1)*(1-2/(n-2)) ...
*(1-2/3)

m=-2/n*mn-3/(n-1))* (n—-4/(n-2))
* R (2/4) * (1/3)

2/(n*(n-1))

Probability of not finding C
= 1-2/(n*(n-1))

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 31

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

32

Is this good enough?

Probability of not finding C on one trial:
< 1-2/(n*(n-1)) £ 1 -2/n?

Probability of not finding C on k trials:
< [1-2/n2)F
If k=cn?,
Prob failure < (1/e)°
Recall: lim (1 - 1/x)*=1/e

X —>o0

Charge

e Monday is last class: it will be mostly
review if enough good review
questions are sent in

¢ No section or Small Hall hours next
week

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 33

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

34

