
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 8:
Crash Course

in
Computational

Complexity

http://www.cs.virginia.edu/cs216 2UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Procedures and Problems
• So far we have been talking about
procedures (how much work is our
brute force subset sum algorithm?)

• We can also talk about problems:
how much work is the subset sum
problem?

What is a problem?

What does it mean to describe the
work of a problem?

3UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Problems and Solutions

• A problem defines a desired output
for a given input.

• A solution to a problem is a
procedure for finding the correct
output for all possible inputs.

• The time complexity of a problem
is the running time of the best
possible solution to the problem

4UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Subset Sum Problem

• Input: set of n positive integers, {w0,

…, wn-1}, maximum weight W

• Output: a subset S of the input set
such that the sum of the elements of
S ≤ W and there is no subset of the

input set whose sum is greater than
the sum of S and ≤ W

What is the time complexity of the
subset sum problem?

5UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Brute Force Subset Sum
Solution

def subsetsum (items, maxweight):
best = {}
for s in allPossibleSubsets (items):

if sum (s) <= maxweight \
and sum (s) > sum (best)

best = s
return best

Running time ∈ Θ(n2n)

What does this tell us about the time
complexity of the subset sum problem?

6UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Problems and Procedures
• If we know a procedure that is that is

Θ(f (n)) that solves a problem then we

know the problem is O (f(n)).

• The subset sum problem is in Θ(n2n)
since we know a procedure that
solves it in Θ(n2n)

• Is the subset sum problem in Θ(n2n)?

No, we would need to prove there is no
better procedure.

2

7UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Lower Bound

• Can we find an Ω bound for the
subset sum problem?

• It is in Ω(n) since we know we need
to at least look at every input
element

• Getting a higher lower bound is
tough

8UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

How much work is the
Subset Sum Problem?

• Upper bound: O (2n)

Try all possible subsets

• Lower bound: Ω (n)
Must at least look at every element

• Tight bound: Θ (?)

No one knows!

9UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Tractable/Intractable

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

logn n

nlogn n̂ 2

n̂ 3 2̂ n

Sequence Alignment

Subset Sum

“tractable”

“intractable”

I do nothing that a man of unlimited funds, superb physical

endurance, and maximum scientific knowledge could not do.
– Batman (may be able to solve intractable problems, but

computer scientists can only solve tractable ones for large n)

10UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Complexity Class P
“Tractable”

Class P: problems that can be
solved in polynomial time

O (nk) for some constant k.

Easy problems like sorting,
sequence alignment, simulating
the universe are all in P.

11UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Complexity Class NP

Class NP: problems that can be solved
in nondeterministic polynomial time

If we could try all possible solutions at
once, we could identify the solution in
polynomial time.

Alternately: If we had a magic guess-
correctly procedure that makes every
decision correctly, we could devise a
procedure that solves the problem in
polynomial time.

12UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Complexity Classes
Class P: problems that can be solved in
polynomial time (O(nk) for some constant
k): “myopic” problems like sequence
alignment, interval scheduling are all in P.

Class NP: problems that can be solved in
polynomial time by a nondeterministic
machine: includes all problems in P and
some problems possibly outside P like
subset sum

3

13UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Complexity Classes: Possible View

P

NP

Interval

Scheduling:

O(n log n)

Sequence

Alignment: O(n2)

Subset Sum:

O(2n) and Ω(n)

O(n)

How many problems
are in the O(n) class?

How many problems
are in P but not

in the O(n) class?

How many problems

are in NP but not
in P?

infinite

Either 0 or infinite!

infinite

14UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

P = NP?
• Is P different from NP: is there a
problem in NP that is not also in P

–If there is one, there are infinitely many

• Is the “hardest” problem in NP also in P

–If it is, then every problem in NP is also in P

• No one knows the answer!

• The most famous unsolved problem in
computer science and math

–Listed first on Millennium Prize Problems

15UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Problem Classes if P ⊂ NP:

P

NP

Interval

Scheduling:

O(n log n)

Sequence

Alignment: O(n2)

O(n)

Subset Sum:

O(2n) and Ω(n)

How many problems
are in NP but not

in P?

Infinite!

16UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Problem Classes if P = NP:

P

Interval

Scheduling:

O(n log n)

Sequence

Alignment: O(n2)

Subset Sum:

O(nk)

O(n)

How many problems

are in NP but not
in P?

0

17UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Distinguishing P and NP

• Suppose we identify the hardest
problem in NP - let’s call it Super
Arduous Task (SAT)

• Then deciding is P = NP should be
easy:

–Find a P-time solution to SAT ⇒ P = NP

–Prove there is no P-time solution to SAT
⇒ P ⊂ NP

18UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

The Satisfiability Problem (SAT)

• Input: a sentence in propositional
grammar

• Output: Either a mapping from
names to values that satisfies the
input sentence or no way
(meaning there is no possible
assignment that satisfies the input
sentence)

4

19UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

SAT
Example

SAT (a ∨ (b ∧ c) ∨ ¬b ∧ c)

→ { a: true, b: false, c: true }

→ { a: true, b: true, c: false }

SAT (a ∧ ¬a)
→ no way

Sentence ::= Clause

Clause ::= Clause1 ∨ Clause2 (or)

Clause ::= Clause1 ∧ Clause2 (and)

Clause ::= ¬Clause (not)

Clause ::= (Clause)

Clause ::= Name

20UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

The 3SAT Problem
• Input: a sentence in propositional
grammar, where each clause is a
disjunction of 3 names which may be
negated.

• Output: Either a mapping from names
to values that satisfies the input
sentence or no way (meaning there
is no possible assignment that
satisfies the input sentence)

21UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

3SAT / SAT

Is 3SAT easier or harder than
SAT?

It is definitely not harder than
SAT, since all 3SAT problems
are also SAT problems. Some
SAT problems are not 3SAT
problems.

22UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

3SAT
Example

3SAT ((a ∨ b ∨ ¬ c)

∧ (¬a ∨ ¬ b ∨ d)

∧ (¬a ∨ b ∨ ¬ d)

∧ (b ∨ ¬ c ∨ d))

→ { a: true, b: false, c: false, d: false}

Sentence ::= Clause

Clause ::= Clause1 ∨ Clause2 (or)

Clause ::= Clause1 ∧ Clause2 (and)

Clause ::= ¬Clause (not)

Clause ::= (Clause)

Clause ::= Name

23UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

NP Completeness
• Cook and Levin proved that 3SAT was
NP-Complete (1971): as hard as the
hardest problem in NP

• If any 3SAT problem can be
transformed into an instance of
problem Q in polynomial time, than
that problem must be no harder than
3SAT: Problem Q is NP-hard

• Need to show in NP also to prove Q is
NP-complete.

24UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Subset Sum is NP-Complete

• Subset Sum is in NP

–Easy to check a solution is correct?

• 3SAT can be transformed into
Subset Sum

–Transformation is complicated, but
still polynomial time.

–A fast Subset Sum solution could
be used to solve 3SAT problems

5

25UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Problem Classes if P ≠ NP:

P

Interval

Scheduling:

Θ(n log n)

Sequence

Alignment: O(n2)

Subset Sum

O(n)

How many problems
are in the Θ(n) class?

How many problems

are in P but not
in the Θ(n) class?

How many problems

are in NP but not
in P?

infinite

infinite

infinite

NP

3SAT

NP-Complete

Note the
NP-

Complete
class is a

ring – others
are circles

26UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

NP-Complete Problems
• Easy way to solve by trying all
possible guesses

• If given the “yes” answer, quick (in P)
way to check if it is right

–Assignments of values to names (evaluate
logical proposition in linear time)

–Subset – check if it has correct sum

• If given the “no” answer, no quick way
to check if it is right

–No solution (can’t tell there isn’t one)

27UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Traveling Salesperson Problem

–Input: a graph of cities and roads
with distance connecting them and a
minimum total distant

–Output: either a path that visits each
with a cost less than the minimum,
or “no”.

• If given a path, easy to check if it
visits every city with less than
minimum distance traveled

28UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Graph (Map) Coloring Problem

–Input: a graph of nodes with edges
connecting them and a minimum
number of colors

–Output: either a coloring of the nodes
such that no connected nodes have
the same color, or “no”.

If given a coloring, easy to check if it no

connected nodes have the same color,
and the number of colors used.

29UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Minesweeper Consistency
Problem

–Input: a position of n

squares in the game

Minesweeper

–Output: either a

assignment of bombs to

squares, or “no”.

• If given a bomb assignment,
easy to check if it is consistent.

30UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Pegboard Problem

6

31UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Pegboard Problem
- Input: a configuration of n pegs on
a cracker barrel style pegboard

- Output: if there is a sequence of
jumps that leaves a single peg,
output that sequence of jumps.
Otherwise, output false.

If given the sequence of jumps, easy
(O(n)) to check it is correct. If not,
hard to know if there is a solution.

32UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Drug Discovery Problem
–Input: a set of
proteins, a desired
3D shape

–Output: a sequence
of proteins that
produces the shape
(or impossible)

If given a sequence, easy (not really –
this may actually be NP-Complete too!) to
check if sequence has the right shape.

Caffeine

33UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Is it ever useful to be
confident that a problem is

hard?

34UVa CS216 Spring 2006 - Lecture 8: Computational Complexity

Charge

• PS3 can be turned in up till 4:50pm
Friday: turn in to Brenda Perkins in
CS office (she has folders for each
section)

• Exam 2 will be handed out
Wednesday

–Send me email questions you want
reviewed

