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Procedures and Problems
• So far we have been talking about 
procedures (how much work is our 
brute force subset sum algorithm?)

• We can also talk about problems: 
how much work is the subset sum 
problem?

What is a problem?

What does it mean to describe the
work of a problem?
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Problems and Solutions

• A problem defines a desired output 
for a given input.  

• A solution to a problem is a 
procedure for finding the correct 
output for all possible inputs.

• The time complexity of a problem 
is the running time of the best 
possible solution to the problem
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Subset Sum Problem

• Input: set of n positive integers, {w0, 

…, wn-1}, maximum weight W

• Output: a subset S of the input set 
such that the sum of the elements of 
S ≤ W and there is no subset of the 

input set whose sum is greater than 
the sum of S and ≤ W

What is the time complexity of the
subset sum problem?
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Brute Force Subset Sum
Solution

def subsetsum (items, maxweight):
best = {} 
for s in allPossibleSubsets (items):

if sum (s) <= maxweight \
and sum (s) > sum (best)

best = s
return best

Running time ∈ Θ(n2n)

What does this tell us about the time 
complexity of the subset sum problem?
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Problems and Procedures
• If we know a procedure that is that is 

Θ(f (n)) that solves a problem then we 

know the problem is O (f(n)).

• The subset sum problem is in Θ(n2n)
since we know a procedure that 
solves it in Θ(n2n)

• Is the subset sum problem in Θ(n2n)?

No, we would need to prove there is no 
better procedure.
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Lower Bound

• Can we find an Ω bound for the 
subset sum problem?

• It is in Ω(n) since we know we need 
to at least look at every input 
element

• Getting a higher lower bound is 
tough
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How much work is the 
Subset Sum Problem?

• Upper bound: O (2n)

Try all possible subsets

• Lower bound: Ω (n)
Must at least look at every element

• Tight bound: Θ (?)

No one knows! 
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Tractable/Intractable

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

logn n

nlogn n̂ 2

n̂ 3 2̂ n

Sequence Alignment

Subset Sum

“tractable”

“intractable”

I do nothing that a man of unlimited funds, superb physical 

endurance, and maximum scientific knowledge could not do.
– Batman (may be able to solve intractable problems, but 

computer scientists can only solve tractable ones for large n)
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Complexity Class P
“Tractable”

Class P: problems that can be 
solved in polynomial time

O (nk) for some constant k.

Easy problems like sorting, 
sequence alignment, simulating 
the universe are all in P.
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Complexity Class NP

Class NP: problems that can be solved 
in nondeterministic polynomial time

If we could try all possible solutions at 
once, we could identify the solution in 
polynomial time.

Alternately: If we had a magic guess-
correctly procedure that makes every 
decision correctly, we could devise a 
procedure that solves the problem in 
polynomial time.
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Complexity Classes
Class P: problems that can be solved in 
polynomial time (O(nk) for some constant 
k): “myopic” problems like sequence 
alignment, interval scheduling are all in P.

Class NP: problems that can be solved in  
polynomial time by a nondeterministic 
machine: includes all problems in P and 
some problems possibly outside P like 
subset sum
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Complexity Classes: Possible View

P

NP

Interval 

Scheduling: 

O(n log n)

Sequence

Alignment: O(n2)

Subset Sum: 

O(2n) and Ω(n)

O(n)

How many problems
are in the O(n) class?

How many problems
are in P but not 

in the O(n) class?

How many problems

are in NP but not 
in P?

infinite

Either 0 or infinite!

infinite
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P = NP?
• Is P different from NP: is there a 
problem in NP that is not also in P

–If there is one, there are infinitely many

• Is the “hardest” problem in NP also in P

–If it is, then every problem in NP is also in P

• No one knows the answer!

• The most famous unsolved problem in 
computer science and math

–Listed first on Millennium Prize Problems
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Problem Classes if P ⊂ NP:

P

NP

Interval 

Scheduling: 

O(n log n)

Sequence 

Alignment: O(n2)

O(n)

Subset Sum: 

O(2n) and Ω(n)

How many problems
are in NP but not 

in P?

Infinite!
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Problem Classes if P = NP:

P

Interval 

Scheduling: 

O(n log n)

Sequence 

Alignment: O(n2)

Subset Sum: 

O(nk)

O(n)

How many problems

are in NP but not 
in P?

0
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Distinguishing P and NP

• Suppose we identify the hardest
problem in NP - let’s call it Super 
Arduous Task (SAT)

• Then deciding is P = NP should be 
easy:

–Find a P-time solution to SAT ⇒ P = NP

–Prove there is no P-time solution to SAT 
⇒ P ⊂ NP
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The Satisfiability Problem (SAT)

• Input: a sentence in propositional 
grammar

• Output: Either a mapping from 
names to values that satisfies the 
input sentence or no way 
(meaning there is no possible 
assignment that satisfies the input 
sentence)
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SAT 
Example

SAT (a ∨ (b ∧ c) ∨ ¬b ∧ c)

→ { a: true, b: false, c: true }

→ { a: true, b: true, c: false }

SAT (a ∧ ¬a)
→ no way

Sentence ::= Clause

Clause ::= Clause1 ∨ Clause2  (or)

Clause ::= Clause1 ∧ Clause2 (and)

Clause ::= ¬Clause (not)

Clause ::= ( Clause )

Clause ::= Name
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The 3SAT Problem
• Input: a sentence in propositional 
grammar, where each clause is a 
disjunction of 3 names which may be 
negated.

• Output: Either a mapping from names 
to values that satisfies the input 
sentence or no way (meaning there 
is no possible assignment that 
satisfies the input sentence)
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3SAT / SAT

Is 3SAT easier or harder than 
SAT?

It is definitely not harder than 
SAT, since all 3SAT problems
are also SAT problems.  Some 
SAT problems are not 3SAT 
problems.
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3SAT 
Example

3SAT ( (a ∨ b ∨ ¬ c) 

∧ (¬a ∨ ¬ b ∨ d) 

∧ (¬a ∨ b ∨ ¬ d) 

∧ (b ∨ ¬ c ∨ d ) )

→ { a: true, b: false, c: false, d: false}

Sentence ::= Clause

Clause ::= Clause1 ∨ Clause2  (or)

Clause ::= Clause1 ∧ Clause2 (and)

Clause ::= ¬Clause (not)

Clause ::= ( Clause )

Clause ::= Name
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NP Completeness
• Cook and Levin proved that 3SAT was 
NP-Complete (1971): as hard as the 
hardest problem in NP

• If any 3SAT problem can be 
transformed into an instance of 
problem Q in polynomial time, than 
that problem must be no harder than 
3SAT: Problem Q is NP-hard

• Need to show in NP also to prove Q is 
NP-complete.
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Subset Sum is NP-Complete

• Subset Sum is in NP

–Easy to check a solution is correct?

• 3SAT can be transformed into 
Subset Sum

–Transformation is complicated, but 
still polynomial time.

–A fast Subset Sum solution could 
be used to solve 3SAT problems
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Problem Classes if P ≠ NP:

P

Interval 

Scheduling: 

Θ(n log n)

Sequence 

Alignment: O(n2)

Subset Sum

O(n)

How many problems
are in the Θ(n) class?

How many problems

are in P but not 
in the Θ(n) class?

How many problems

are in NP but not 
in P?

infinite

infinite

infinite

NP

3SAT

NP-Complete

Note the 
NP-

Complete 
class is a 

ring – others 
are circles
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NP-Complete Problems
• Easy way to solve by trying all 
possible guesses

• If given the “yes” answer, quick (in P) 
way to check if it is right

–Assignments of values to names (evaluate 
logical proposition in linear time)

–Subset – check if it has correct sum

• If given the “no” answer, no quick way 
to check if it is right

–No solution (can’t tell there isn’t one)
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Traveling Salesperson Problem

–Input: a graph of cities and roads 
with distance connecting them and a 
minimum total distant

–Output: either a path that visits each 
with a cost less than the minimum, 
or “no”.

• If given a path, easy to check if it 
visits every city with less than 
minimum distance traveled
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Graph (Map) Coloring Problem

–Input: a graph of nodes with edges 
connecting them and a minimum 
number of colors

–Output: either a coloring of the nodes 
such that no connected nodes have 
the same color, or “no”.

If given a coloring, easy to check if it no 

connected nodes have the same color, 
and the number of colors used.
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Minesweeper Consistency 
Problem

–Input: a position of n

squares in the game 

Minesweeper

–Output: either a 

assignment of bombs to 

squares, or “no”.

• If given a bomb assignment, 
easy to check if it is consistent.
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Pegboard Problem
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Pegboard Problem
- Input: a configuration of n pegs on 
a cracker barrel style pegboard

- Output: if there is a sequence of 
jumps that leaves a single peg, 
output that sequence of jumps.  
Otherwise, output false.

If given the sequence of jumps, easy 
(O(n)) to check it is correct. If not, 
hard to know if there is a solution.
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Drug Discovery Problem
–Input: a set of 
proteins, a desired 
3D shape

–Output: a sequence 
of proteins that 
produces the shape 
(or impossible)

If given a sequence, easy (not really –
this may actually be NP-Complete too!) to 
check if sequence has the right shape.

Caffeine
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Is it ever useful to be 
confident that a problem is 

hard?
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Charge

• PS3 can be turned in up till 4:50pm 
Friday: turn in to Brenda Perkins in 
CS office (she has folders for each 
section)

• Exam 2 will be handed out 
Wednesday

–Send me email questions you want 
reviewed


