
CS216: Exam 2

1 of 9 4/20/2006 5:38 PM

University of Virginia Computer Science

CS216: Program and Data Representation, Spring 2006 20 April 2006

Exam 2
Out: 20 April 2006

Due: Monday, 24 April, 11:01AM

Name: ___

Scores

1 2 3 4 5 6 7 8 9 Total

10 10 10 10 10 5 10 10 10 85

Directions

Work alone. You may not discuss these problems or anything related to the material

covered by this exam with anyone except for the course staff between receiving this exam and

class Monday.

Closed web. You may not search the web to attempt to find answers to the questions on this

exam. You may you web pages linked from the CS216 web site, but may not do web searches

to attempt to find specific answers.

Open other resrouces. You may use any books you want, lecture notes and slides, your notes,

and problem sets. If you use anything other than the course books and notes, cite what you

used. You may not use other people.

Open tools. You may run any program you want, including a Python interpreter, C compiler,

Java compilers, Java VM, and x86 assembler for this exam. You are not expected to need to do

this, and will not lose points for minor syntactic mistakes.

Answer well. Write your answers on this exam. You should not need more space than is

provided to write good answers, but if you want more space you may attach extra sheets. If you

do, make sure the answers are clearly marked.

This exam has 10 questions, the last of which is non-credit. The questions are not necessarily

in order of increasing difficulty, so if you get stuck on one question you should continue on to

the next question. There is no time limit on this exam, but it should not take a well-prepared

student more than a few hours to complete.

Full credit depends on the clarity and elegance of your answer, not just correctness. Your

answers should be as short and simple as possible, but not simpler.

CS216: Exam 2

2 of 9 4/20/2006 5:38 PM

Huffman Encoding

1. (10) Consider the following frequency distribution:

Symbol: A B C D E F G

Count: 5 3 2 3 6 2 4

How many different optimal prefix encodings are there for the given frequency distribution? Your answer

should include a clear explanation of why it is correct.

CS216: Exam 2

3 of 9 4/20/2006 5:38 PM

Number Representations

2. (10) In Class 16, we saw that the floating point imprecision in representing 0.1 led to an error of 0.0034

seconds per hour in the Patriot missle time calculations. What clock tick unit would maximize the error

accumulated per hour? What is the error?

CS216: Exam 2

4 of 9 4/20/2006 5:38 PM

Memory Management

3. (10) Explain (a) why the C program below has a memory leak and (b) how to fix it.

include

include

include

char *copyString (char *s)

{

 char *res = (char *) malloc (sizeof (char) * strlen (s));

 strcpy (res, s);

 return res;

}

int main (int argc, char **argv)

{

 char *a = "alpha";

 char *b = "beta";

 while (*a != *b) {

 b = copyString (b + 1);

 }

 printf ("The strings are: %s / %s\n", a, b);

 exit (0);

}

CS216: Exam 2

5 of 9 4/20/2006 5:38 PM

 4. (10) Explain two reasons why it is easier to write a garbage collector for Python than it is to write a

garbage collector for C?

CS216: Exam 2

6 of 9 4/20/2006 5:38 PM

 5. (10) Here is the JVML code for a Java method:

Method int func(int, int)

 0 iload_0

 1 istore_2

 2 iload_1

 3 istore_3

 4 iload_2

 5 iload_3

 6 iadd

 7 istore 4

 9 iload_2

 10 iload 4

 12 if_icmple 18

 15 iinc 4 1

 18 iload 4

 20 ireturn

Write JVML code for a method with exactly the same behavior with as few instructions as possible. Be

careful to make sure the result from your new function will always match the result from the original

function on all possible inputs.

CS216: Exam 2

7 of 9 4/20/2006 5:38 PM

Assembly Programming

For each of the next three questions, answer whether or not the two shown assembly code fragements have

equivalent behavior. Equivalent behavior is defined as if the values in all general purpose registers (we do

not consider the flag registers), the stack, and all of memory are the same before entering the fragment, they

are always the same after exiting the fragment. If the two fragements have the same behavior, explain what

that behavior is. If they have different behavior, illustrate the difference by showing an initial state for which

the two fragments produce different final states.

6. (5)

mov eax, ebx

push ecx
mov ebx, ecx
mov eax, ecx
mov cx, bx

pop ecx

Fragment A Fragment B

7. (10) For this question, assume the called function _func correctly follows the C calling convention.

push 216
push 202

call _func
add esp, 8

push eax
push 216
push 202

call _func
add esp, 8
pop eax

Fragment A Fragment B

CS216: Exam 2

8 of 9 4/20/2006 5:38 PM

 8. (10) Do the two functions have equivalent behavior? (Assume all callers must correctly follow the C

calling convention.)

_myFunc PROC
 ; Subroutine Prologue
 push ebp ; Save the old base pointer value.

 mov ebp, esp ; Set the new base pointer value.
 sub esp, 4 ; Make room for one 4-byte local variable.
 push edi ; Save the values of modified registers.
 push esi ; (no need to save EBX, EBP, or ESP)

 ; Subroutine Body

 mov eax, [ebp+8] ; Move parameter 1 into EAX
 mov esi, [ebp+12] ; Move parameter 2 into ESI
 mov edi, [ebp+16] ; Move parameter 3 into EDI

 mov [ebp-4], edi ; Move EDI into local variable
 add [ebp-4], esi ; Add ESI into local variable

 add eax, [ebp-4] ; Add local into EAX (result)

 ; Subroutine Epilogue
 pop esi ; Recover register values
 pop edi

 mov esp, ebp ; Deallocate local variables
 pop ebp ; Restore the caller's ebp
 ret
_myFunc ENDP

END

_myFunc PROC
 sub esp, 4
 mov eax, [esp+8]

 mov ecx, [esp+12]
 mov edx, [esp+16]
 mov [esp], edx
 add [esp], ecx

 add eax, [esp]
 pop edx
 ret
_myFunc ENDP

END

Fragment A (Note: this is the example from the x86 Guide, with

some of the comments shortened to save space)
Fragment B

CS216: Exam 2

9 of 9 4/20/2006 5:38 PM

 9. (10) Consider modifying the x86 calling convention to put the return value on the top of the stack when a

routine returns instead of using EAX to hold the return value. What are the advantages and disadvantages of

this change?

10. (no credit) Which topics would you most prefer we cover in the remaining two classes (use "1" to

indicate your most prefered topic, "2" for second most, etc.):

____ Improved Tree Data Structures

____ Partner Assignment Algorithms

____ Graph and Network Algorithms

____ Randomized Algorithms

____ .NET's virtual machine and how it differs from the Java VM

____ An instruction set very different from x86

____ Review

____ Other: ___

CS216: Program and Data Representation

University of Virginia

cs216-staff@cs.virginia.edu

Using these Materials

