
CS216: Problem Set 2: Phylogeny http://www.cs.virginia.edu/cs216/ps/ps2/

1 of 8 1/30/2006 10:11 AM

University of Virginia Computer Science

CS216: Program and Data Representation, Spring 2006

http://www.cs.virginia.edu/cs216/ps/ps2/

30 January 2006

Problem Set 2

Phylogeny
Out: 30 January

Due: 8 February (11am)

What to Turn In

On Wednesday, 8 February, bring to class a stapled turn in containing your answers to

questions 1-10. You and your partner should turn in a single assignment reflecting your best

combined efforts with both of your names on it. Your answers should be printed in order and

formatted clearly. Include all the code you wrote, but do not include large amounts of code

we provided in your turn in.

Collaboration Policy - Read Carefully

For this assignment, you should do the first two parts (questions 1-5) on your own, and then meet with

your assigned partner. Assigned partners will be emailed to the course list on Monday, January 30.

When you meet with your partner, you should first discuss your answers to the first two parts to arrive at

a consensus best answer for each question. The consensus answer is the only answer you will turn in.

Then, you should work as a team on the final part (questions 6-10). When you are working as a team,

both partners should be actively involved all the time and you should take turns driving (who is typing at

the keyboard).

You may consult any outside resources including books, papers, web sites and people, you wish for

information on Python programming. Unlike Problem Set 1, you should feel free to conduct web searches

or look at reference material on Sequence Alignment, Phylogeny, and related problems as you wish. You

are also encouraged to discuss these problems with students in the class, including (but not limited to)

your assigned partner.

You are strongly encouraged to take advantage of the staffed lab hours (which will be posted on the

CS216 web site).

Purpose

Get familiar with the Python programming language and tools

Learn to experimentally analyze the asymptotic efficiency of a data structure

Understand and analyze a brute-force genome alignment algorithm

Reading: Read Chapter 4 of the textbook.

Download: ps2.zip. This contains 5 Python files: LinkedList.py

(a linked representation immutable list datatype),

ContinuousList.py (a continuous representation immutable list

datatype), DynAlign.py (a memoized implementation of sequence

alignment), Tree.py (a simple binary tree datatype), and

Phylogeny.py (some starting code for your phylogeny program).

List Representations

The provided files LinkedList.py and ContinuousList.py provide two simple immutable list

datatype implementations.

CS216: Problem Set 2: Phylogeny http://www.cs.virginia.edu/cs216/ps/ps2/

2 of 8 1/30/2006 10:11 AM

1. For each of the operations listed below, describe the asymptotic running time and memory

use. Use the variable n to represent the length of the self list. State clearly any assumptions

you need to make about the underlying Python list implementation used in

ContinuousList.py. (We have provided answers for the length operation.)

 LinkedList.py ContinuousList.py

Operation
Running

Time
Memory

Running

Time
Memory

length(self) Θ(n) Θ(1) Θ(1) Θ(1)

__init__(self)

access(self,index)

append(self,value)

__str__(self)

2. Is it possible to implement any of the operations with better asymptotic performance

without changing the data representation or semantics? (Note that making the datatype

mutable does change the semantics, so is not an option for this question.) If so, explain how

you would improve the asymptotic running time or memory usage for one of the operations.

If not, explain why it is not possible to improve the asymptotic running time or memory

usage of any of the operations (without changing the representation or semantics).

Mutability

The list abstraction datatype described in the textbook is immutable. This means that once a list object is

created, its value never changes. Operations that might appear to modify a list, such as append, are

actually defined in a way that produces a new list and leaves the original list unchanged.

We can define a mutable abstract datatype with operations as follows (note that the first three operations

are identical to those for the immutable list datatype from Lecture 3:

Access (L, i) (corresponds to the access(self,index) method): returns L[i]

Length (L) (corresponds to the length(self) method): returns |L|

MakeEmptyList() (corresponds to the __init__(self) method): returns <>

Append (L, e) (corresponds to the append(self,value) method): modifies the value of L.

The value of Lpost = <l0, l1, ..., l|L|-1, e > where <l0, l1, ..., l|L|-1> are the elements of L before the

call.

We can modify the ContinuousList.py implementation to match the new semantics by modifying

just the append operation:

CS216: Problem Set 2: Phylogeny http://www.cs.virginia.edu/cs216/ps/ps2/

3 of 8 1/30/2006 10:11 AM

def append(self, value):

 self.__items.append(value)

 self.__len += 1

 return self

3. Modify the LinkedList.py implementation to support the mutable list semantics and

to provide an append operation that whose running time and memory use are both in O(1).

(Hint: you may need to add a field to the LinkedList class.)

Dynamic Programming

Dynamic programming is an algorithmic technique for avoiding duplicate computation by accumulating

partial results. Typically, we turn a recursive definition that solves a problem by composing the solutions

to smaller problems into an algorithm that accumulates and combines the partial results.

Consider our alignment code from PS1, excerpted below:

def bestAlignment (U, V, c, g):

 if len(U) == 0 or len(V) == 0:

 ...

 else:

 # try three possibilities:

 (U0, V0) = bestAlignment (U[1:], V[1:], c, g)

 ...

 (U1, V1) = bestAlignment (U, V[1:], c, g)

 ...

 (U2, V2) = bestAlignment (U[1:], V, c, g)

 ...

 # pick the best one

Although this is a clear way of finding the best alignment, as discussed in Lecture 4 it is very inefficient.

So inefficient, that we cannot find alignments for non-trivial strings.

4. In computing bestAlignment ("catg","atgg"), how many times does the PS1

algorithm evaluate bestAlignment ("tg","tt")? (You may want to check your

answer experimentally, but you should justify your answer analytically.)

An easy way to implement dynamic programming is to just store previously computed results in a table.

Here, we modify the PS1 alignment code to do that. Note that Python's dictionary datatype makes this

easy. We just need to find a unique key to use to identify results to different alignment problems. For

this, we just concatenate the U and V inputs with a % separator between them (that may not appear in U

or V.

The modified code is found in DynAlign.py and shown below. The key changes are bolded:

def bestAlignment (U, V, c, g):

 def memoBestAlignment (U, V, c, g):

 def makeKey (U, V):

 return U + "%" + V

 if memo.has_key(makeKey (U,V)):

 res = memo[makeKey (U,V)]

 return res[0], res[1]

 if len(U) == 0 or len(V) == 0:

 while len(U) < len(V): U = U + GAP

CS216: Problem Set 2: Phylogeny http://www.cs.virginia.edu/cs216/ps/ps2/

4 of 8 1/30/2006 10:11 AM

 while len(V) < len(U): V = V + GAP

 resU = U

 resV = V

 else:

 # try with no gap

 (U0, V0) = memoBestAlignment (U[1:], V[1:], c, g)

 scoreNoGap = goodnessScore (U0, V0, c, g)

 if U[0] == V[0]: scoreNoGap += c

 # try inserting a gap in U (no match for V[0])

 (U1, V1) = memoBestAlignment (U, V[1:], c, g)

 scoreGapU = goodnessScore (U1, V1, c, g) - g

 # try inserting a gap in V (no match for U[0])

 (U2, V2) = memoBestAlignment (U[1:], V, c, g)

 scoreGapV = goodnessScore (U2, V2, c, g) - g

 if scoreNoGap >= scoreGapU and scoreNoGap >= scoreGapV:

 resU = U[0] + U0

 resV = V[0] + V0

 elif scoreGapU >= scoreGapV:

 resU = GAP + U1

 resV = V[0] + V1

 else:

 resU = U[0] + U2

 resV = GAP + V2

 memo[makeKey(U,V)] = [resU, resV]

 return resU, resV

 memo = {}

 return memoBestAlignment (U, V, c, g)

5. How does the algorithm provided here compare to the Needleman-Wunsch algorithm

(from Lecture 4)? A good answer will compare the asymptotic running time of the two

algorithms as well as discuss other differences that may make one or the other a better

choice. You may assume Python's dictionary type provides lookup and insert operations that

have running times in O(1).

Phylogeny

As introduced in Lecture 1, a phylogeny organizes items according to their evolutionary relationships. A

phylogeny of life shows how different species evolved from common ancestors. A phylogeny of language

shows how different languages evolved from a common language.

The Tree of Life project is developing a phylogeny for organisms on Earth. If you are unsure of your

place in the univere, try staring from Life on Earth and walking down the tree to find Homo sapiens.

The way biologists (or linguists) determine evolutionary relationships is to look for similarities and

differences between species (or languages). This is done by identifying a set of features that describe

properties of a species or language. For species, the features might be phenotypic properties (e.g., do

organisms have wings or gills?) or genotypic properties (the DNA sequence). Genotypic properties are

likely to produce more accurate results, since small changes in genomes can produce large phenotypic

changes. Note that this is a historical study. It can rarely provide definitive proof of a particular

relationship, but a preponderance of evidence can make one explanation appear to be the most likely.

If two species have similar genomes, it is likely they evolved from a relatively recent comon ancestor.

CS216: Problem Set 2: Phylogeny http://www.cs.virginia.edu/cs216/ps/ps2/

5 of 8 1/30/2006 10:11 AM

Biologists measure the similarity of genomes based on the number and likelihood of different kinds of

mutations — base pairs may be inserted, deleted, duplicated, moved, or substituted. The number of

mutations necessary to match two genomes gives an indication of the likelihood that the species evolved

from a common ancestor. For this assignment we will assume a very simple model: the only mutation is a

substitution or a single base pair and all substitutions are equally likely.

One measure of which tree is the most likely to represent the actual evolution of a set of species is

parsimony. The parsimony principle is that if there are two possible explanations for an observed

phenomenon, the simpler explanation is most likely to be correct. In producing phylogenetic trees,

parsimony means we should look for the tree that requires the fewest possible total number of mutations.

The goodness scores of the best possible alignments of two nucleotide sequences are one way of

measuring how related they are. So, our goal is to construct a tree that maximizes the total goodness

score of all connected pairs.

For example, consider the set of species described by the genomes below (of course, these are not their

real genomes!):

Species Sequence

Cat catcat

Dog gggggg

Feline cccccc

Tiger cccaat

The goodness scores of the possible pairs (using the c=10, g=2 goodness metric from PS1) :

Species Cat Dog Feline Tiger

Cat - 0 20 36

Dog 0 - 0 0

Feline 20 0 - 30

Tiger 36 0 30 -

Note that our goodness score metric is symmetric (that is goodness(a,b) = goodness(b,a)).

Our goal is to find likely evolutionary relationships among the species by maximizing the sum of the

goodness scores of all direct relationships. For example, consider the tree:

 Cat

 / \

 / \

 Tiger Dog

 /

 /

 Feline

The total goodness score is goodness(Cat, Tiger) + goodness (Cat, Dog) + goodness (Dog, Feline) = 36.

This is a less likely phylogeny than,

CS216: Problem Set 2: Phylogeny http://www.cs.virginia.edu/cs216/ps/ps2/

6 of 8 1/30/2006 10:11 AM

 Feline

 / \

 / \

 Dog Tiger

 /

 /

 Cat

which has a total goodness score of 66. Other trees have the same score, but no tree has a higher score.

For the remaining questions on this assignment, and most of Problem Set 3, you will explore algorithms

and data structures in the context of finding phylogenetic trees. Note that we have greatly simplified the

actual problem of determining biological evolutionary relationships. In fact, many species evolved from

common ancestors which are now extinct. So, a more realistic phlogeny program would need to insert

additional nodes to find a likely tree.

Trees

The file Tree.py provides a simple binary tree implementation. It is missing the __str__ method for

converting a tree to a string representation (this is the method Python will call when a Tree object is

printed using print or passed as a parameter to str). We need a __str__ method that displays a

Tree object in a way that reveals its structure. For example, the two example trees above could be

printed:

Cat

 Tiger

 Dog

 Feline

and

Feline

 Dog

 Tiger

 Cat

Note that we do not need to distinquish between the left and right child when a tree has only one child.

6.a. Define the __str__ method for Tree.py.

6.b. What is the asymptotic running time of your __str__ method? Is it possible to do

better?

Brute Force Phylogeny

A brute force algorithm for determining the best phylogenetic tree is to calculate the total goodness score

for all possible trees and select the best one (or ones). As you will establish in the next question, this is

not a scalable method; it guarantees that the best possible phylogenetic tree is found, but only works for

very small input sizes.

Note: The generator mechanism described below was introduced in Phython version 2.2.

The version of Phython running on the ITC lab machines (as of 30 January) is Python 2.1.

ITC is working on upgrading the version of Phython on the lab machines, and we hope the

new version will be available when you reach this question. If not, we will provide a

version of this code that does not use generators.

CS216: Problem Set 2: Phylogeny http://www.cs.virginia.edu/cs216/ps/ps2/

7 of 8 1/30/2006 10:11 AM

You may find Python's generators an elegant mechanism for expressing your algorithm. A generator is

similar to a procedure, except instead of returning once, it can yield a sequence of values. The caller uses

it in a for loop instead of a procedure call. For example, Tree.py defines this generator:

 def children(self):

 if not self.__left == None:

 yield self.__left

 if not self.__right == None:

 yield self.__right

It will yield the left child (if there is one) the first iteration through the loop, and the right child (if there

is one) the second iteration. When the generator exits, there are no more values to yield and the calling

loop terminates. A client uses it like this,

childsum = 0

for child in tree.children():

 childsum += child.getValue ()

The generator defined below yields all possible two-part partitions of the input list:

def allPossiblePartitions (items):

 if len(items) == 1:

 yield [items[0]], []

 yield [], [items[0]]

 else:

 for left, right in allPossiblePartitions (items[1:]):

 lplus = left[:]

 lplus.insert (0, items[0])

 yield lplus, right

 rplus = right[:]

 rplus.insert (0, items[0])

 yield left, rplus

7. Consider this code excerpt that prints out all possible partitions of the list s:

for p1, p2 in allPossiblePartitions (s):

 print p1, p2

Use n to represent the number of elements in s. You may assume print is O(1).

What is its asymptotic running time?a.

What is its memory usage?b.

Justify your answer with a clear argument and explain carefully all assumptions you make.

8. Describe your plan for implementing a phylogeny algorithm. Your design should include

an explanation of how you will break the problem into components. Once you have figured

out a good design, you may divide the coding parts with your partner, but be sure to test

them independently before you try to compose everything. (Hint: you may find the

allPossiblePartitions generator helpful.)

CS216: Problem Set 2: Phylogeny http://www.cs.virginia.edu/cs216/ps/ps2/

8 of 8 1/30/2006 10:11 AM

9. Implement a brute force phylogeny program that takes as input a set of species and their

genomes (represented using a Python dictionary), and produces as output a list of the best

possible phylogenetic trees. For example:

findTree ({'feline':'cccccc', 'cat':'catcat', \

 'tiger':'cccaat', 'dog':'gggggg'})

should produce the all trees with maximal goodness score (66), including the tree above.

(The number of trees is 18, if we count isomorphic trees where the trees would be identical if

the left and right children are swapped. A better solution would remove these isomorphically

equivalent trees, since there is no different meaning associated with the left and right

children. It is acceptable for a "green star" level solution to this question to include trees that

are isomorphically equivalent in your output.)

10. How much more computing power would you need for your program to produce a

phylogeny for an input set consisting of 16 elements with nucleotide sequences of 1000

bases each within one day? Justify your answer using a combination of analytical reasoning

and experimental results.

Credits: This problem set was created by David Evans and tested by Pitchaya Sitthi-Amorn and David Faulkner for

CS216 Spring 2006.

CS216: Program and Data Representation

University of Virginia

cs216-staff@cs.virginia.edu

Using these Materials

