
cs2220: Engineering Software

Class 11:

Subtyping and Inheritance

Fall 2010

University of Virginia

David Evans

Schedule Updates

PS4 is now due on Monday, October 11

(October 12: Reading day)

Start thinking about project ideas

Once you have an idea for your project,

can substitute parts of your project for

programming parts of PS

Kinds of Abstraction

Procedural Abstraction

Abstraction hides details of computations

One procedure abstracts many information processes

Abstraction by Specification

Abstraction hides how a computation is done

One specification can be satisfied by many procedures

Data Abstraction

Abstraction hides how data is represented

One datatype can be implemented many ways

Subtyping

Filter

BlurFilter

BlurFilter is a subtype of Filter

Filter is the supertype of BlurFilter

BlurFilter ⊆⊆⊆⊆ Filter

Subtype Abstraction allows us

to abstract many possible

datatypes with their supertype.

Subtype Substitution

If B is a subtype of A, everywhere the code

expects an A, a B can be used instead.

Filter f = new BlurFilter();

Filter f;

BlurFilter bf;

...

f = bf;

bf = f;

Applying a Filter

Filter f = loadFilter(command);

int idx = images.getSelectedIndex();

if (idx < 0) {

reportError("An image must be selected to apply an effect.");

return;

}

f.setImage(workingImages.get(idx), (String) imagesModel.get(idx));

Image result = f.apply();

if (result == null) {

reportError("Error applying filter");

} else {

addImage(result, f.getImageName() + "/" + f.getFilterName());

}

from ps4/GUI.java

// EFFECTS: Returns a Filter object

// associated with the input name.

private Filter loadFilter(String fname);

Supertype Specification
public abstract class Filter {

// OVERVIEW: A Filter represents an image and provides a technique for altering it.

// A Filter may be in one of three states: uninitialized, initialized,

// and applied. An initialized or applied filter has an associated image;

// and a Pixels object that represents the pixel data (possibly modified

// by the filter) in the image.

public Filter()

// EFFECTS: Initializes this to an uninitialized filter.

final public void setImage(Image p_image, String p_name)

// REQUIRES: this is uninitialized

// MODIFIES: this

// EFFECTS: Sets the image for this to p_image; sets this to the initialized state.

public String getImageName()

// EFFECTS: Returns the image name associated with the filter.

public String getFilterName()

// EFFECTS: Returns the name of the filter.

...

All subtypes must implement the

supertype’s specification. But, they

can provide different

implementations.

Method Dispatch

Assume B is a subtype of A

If both A and B have a method filter which

method should be called?

A a = new A ();

B b = new B ();

a.filter();

b.filter();

a = b;

a.filter()

Calls class A’s filter method

Calls class B’s filter method

Calls class B’s filter method

Dynamic Dispatch

Search for the method up the type hierarchy,

starting from the actual (dynamic) type of the

object

A

B

A a = new A ();

B b = new B ();

a.filter();

b.filter();

a
apparent type

actual type

b

apparent type

actual type

Dynamic Dispatch

B

A a = new A ();

B b = new B ();

a.display ();

b.display ();

a = b;

a
apparent type

actual type

b

apparent type

actual type
Now: apparent type of a is A,

actual type of a is B

A

Apparent and Actual Types

Apparent types are associated with declarations

Never change

Actual types are associated with objects

Always a subtype of the apparent type

Can change which subtype it is

Compiler does type checking using apparent type

JVM does method dispatch using actual type

How can we change the actual type of a variable?

How can we change the apparent type of an expression?

Downcasting

Casting changes the apparent type.

The VM must check at runtime that

the actual type is a subtype of the

cast type (if not, ClassCastException).

Filter f = new Filter();
BlurFilter bf = new BlurFilter();

f = bf;

bf = f;

bf = (BlurFilter) f;

bf = (AddFilter) f;

Compiler type mismatch error

ClassCastException

Implementing a Subtype

public class BlurFilter extends Filter {

...

@Override

public String getFilterName() {

return "blur";

}

...

}

public abstract class Filter {

...

public String getFilterName() {

return "basic";

}

...

}

Supertype

Subtype

Dynamic Dispatch

Filter f = loadFilter(command);

int idx = images.getSelectedIndex();

if (idx < 0) {

reportError("An image must be selected to apply an effect.");

return;

}

f.setImage(workingImages.get(idx), (String) imagesModel.get(idx));

Image result = f.apply();

if (result == null) {

reportError("Error applying filter");

} else {

addImage(result, f.getImageName() + "/" + f.getFilterName());

}

from ps4/GUI.java

Overriding Methods

public abstract class Filter {

...

protected abstract void filter();

// REQUIRES: this must be initialized

// MODIFIES: this

// EFFECTS: alters the image in a manner specified by the filter.

...

} public class BlurFilter extends Filter {

...

@Override

protected void filter()

// MODIFIES: this

// EFFECTS: Blurs the pixels in this by averaging their colors

// with those of the surrounding pixels.

{

...

}

}

public class FlipFilter extends Filter {

@Override

protected void filter()

// MODIFIES: this

// EFFECTS: Replaces the pixels in image with their mirror

image

// (flips horizontally around center).

public abstract class MultiFilter extends Filter

{

...

protected void addImage (Image p_image) ;

}

public class AddFilter extends MultiFilter {

...

@Override

protected void filter()

// MODIFIES: this

// EFFECTS: Replaces each pixel in the image with the

// bitwise or of the corresponding pixels in all the images.

Subtyping vs. Inheritance

Inheritance

Reusing the implementation of one type to

build a new datatype

Subtyping

Defining a new type that can be used

everywhere the supertype is expected

These are very different notions, but often confused! It is possible to have

inheritance without subtyping, and to have subtyping without inheritance.

Subtyping/Inheritance in Java

extends: both subtyping and inheritance

implements: just subtyping

class B extends A { ... }

B is a subtype of A

B inherits from A

class C implements D { ... }

C is a subtype of D

Is it possible to get inheritance

without subtyping?

Not conveniently. But, this reuses most of B’s implementation without

allowing A objects to be used where B is expected.

public class A {

// rep is a B

private B rep;

public A() { rep(); }

public int method(int x) { return rep.method(x); }

... // same for all B methods you want to “inherit”

}

Java’s Type Hierarchy

java.lang.Object

java.lang.String

java.lang.Object is the

ultimate supertype of

every object type.

java.util.AbstractCollection<E>

java.util.AbstractList<E>

java.util.ArrayList<E>

http://download.oracle.com/javase/6/docs/api/java/util/TreeSet.html

7 October 2003 CS 201J Fall 2003

Java 3D Class Hierarchy Diagram
http://java.sun.com/products/java-media/3D/collateral/j3dclass.html

RotationPathInterpolator
PathInterpolator

Interpolator

Selector
Node

Leaf

SceneGraphObject

Not at all uncommon to have

class hierarchies like this!

All Classes are Subtypes

public class Graph {

...

}

public class Graph extends Object {

...

}

really means:

public class java.lang.Object {

public boolean equals(Object o) { ... }

public String toString() { ... }

... // 7 other methods

}

Why Subtyping is Scary

Reasoning about correct code now requires

thinking about all possible subtypes!

Substitution Principle (Behavioral Subtyping):

imposing limits on the possible specifications of

subtypes to make this possible!

Charge

Subtyping

– Allow one type to be used where another type is
expected

Inheritance

– Reuse implementation of the supertype to
implement a subtype

Thursday:

– When is it safe to say B is a subtype of A?

Now: project ideas!

