
cs2220: Engineering Software

Class 12:

Substitution Principle

Fall 2010

University of Virginia

David Evans

static public boolean moreElements(ArrayList<String> a, ArrayList<String> b)

// REQUIRES: a and b are not null

// MODIFIES: nothing

// EFFECTS: Returns true iff a has more elements than b.

{

return a.size() > b.size();

}

Is this correct?

static public boolean moreElements(ArrayList<String> a, ArrayList<String> b)

// REQUIRES: a and b are not null

// MODIFIES: nothing

// EFFECTS: Returns true iff a has more elements than b.

{

return a.size() > b.size();

}

public static void main(String[] args) {

// TODO Auto-generated method stub

ArrayList<String> a;

ArrayList<String> b;

…

a.add("Hello");

b.add("Ciao");

b.add("Goodbye");

System.out.println("More elements: " + moreElements(a, b));

}

Dangers of Subtyping
public class SillyList<E> extends ArrayList<E> {

@Override

public int size()

// REQUIRES: The alert level has reached DEFCON 5, all the missiles have

// been targeted, and the President has issued a verified launch

// command.

// MODIFIES: Everything

// EFFECTS: Launches the missiles. Returns the expected number of

// elements in the object after all the computer’s memory has been

// destroyed by radiation.

{

launchMissiles();

return 0;

}

}

public static void main(String[] args) {

ArrayList<String> a = new SillyList<String>();

ArrayList<String> b = new SillyList<String>();

a.add("Hello");

b.add("Ciao");

b.add("Goodbye");

System.out.println("More elements: " + moreElements(a, b));

}

Reasoning about programs that can use

unfettered subtyping is hopeless!

How can we solve this?

static public String pasteTogether(String a, String b)

// REQUIRES: a and b are not null

// EFFECTS: Returns a String that is a followed by b.

{

return a.concat(b);

}

Could pasteTogether launch the missiles?

public final class String extends Object

implements Serializable, Comparable<String>, CharSequence { … }

Reasoning with Subtyping

Easy approach #1: don’t allow subtyping!
Make all classes final (like java.lang.String)

Easy approach #2: give up on reasoning

Reason based on the apparent type specification and don’t
make any claims about what happens with subtypes.

Hard approach: impose constraints on subtypes to allow
reasoning

Substitution principle

How do we know if saying

B is a subtype of A is safe?

Substitution Principle: If B is a subtype of A,

everywhere the code expects an A, a B can be

used instead and the program still satisfies its

specification

Subtype Condition 1: Signature Rule

We can use a subtype method where a

supertype methods is expected:

– Subtype must implement all of the supertype

methods

– Argument types must not be more restrictive

– Result type must be at least as restrictive

– Subtype method must not throw exceptions that

are not subtypes of exceptions thrown by supertype

Signature Rule

class A {

public RA m (PA p) ;

}

class B extends A {

public RB m (PB p) ;

}

RB must be a subtype of RA: RB <= RA

PB must be a supertype of PA: PB >= PA

covariant for results, contravariant for parameters

Subtype Condition 2: Methods Rule

Precondition of the subtype method must be

weaker than the precondition of the

supertype method.

mA.pre ⇒ mB.pre

Postcondition of the subtype method must be

stronger than the postcondition of the

supertype method.

mB.post ⇒ mA.post

Subtype Condition 3: Properties

Subtypes must
preserve all
properties
described in the
overview
specification of the
supertype.

Properties Example

public class StringSet

// Overview: An immutable set of Strings.

public class MutStringSet extends StringSet

// Overview: A mutable set of Strings.

MutStringSet cannot be a subtype of StringSet, since it does not

satisfy property that once a StringSet object is created its value

never changes.

Would it be okay for a subtype of a mutable type to be immutable?

Properties Example

public class ImmutableStringSet extends MutStringSet

// Overview: An immutable set of Strings.

public class MutStringSet

// Overview: A mutable set of Strings.

ImmtableStringSet could be a subtype of MutStringSet according to the properties rule.

...but would be very difficult to satisfy the methods rule!

Substitution Principle Summary

• Signatures: subtype methods must be type correct in

supertype callsites: result is a subtype (covariant),

parameters are supertypes (contravariant)

• Methods: subtype preconditions must be weaker

than supertype preconditions (covariant); subtype

postconditions must be stronger than supertype

postconditions (contravariant)

• Properties: subtype must preserve all properties

specified in supertype overview

Substitution Principle Summary

Param Types Psub ≥ Psuper

Preconditions pre_sub ⇒ pre_super

Result Type Rsub ≤ Rsuper

Postconditions post_sub ⇒ post_super

Properties properties_sub ⇒ properties_super

contravariant

for inputs

covariant

for outputs

These properties ensure code that is correct using an object of

supertype is correct using an object of subtype.

Substitution Mystery
… (in client code)

MysteryType1 mt1;

MysteryType2 mt2;

MysteryType3 mt3;

… (anything could be here)

mt1 = mt2.m (mt3);

If the Java compiler accepts this code, which of these are guaranteed to be true:

a. The apparent type of mt2 is MysteryType2

b. At the last statement, the actual type of mt2 is MysteryType2

c. MysteryType2 has a method named m

d. The MysteryType2.m method takes a parameter of type MysteryType3

e. The MysteryType2.m method returns a subtype of MysteryType1

f. After the last statement, the actual type of mt1 is MysteryType1

