
Class 15:

Threads and Concurrency

Fall 2010

University of Virginia

Robbie Hott

cs2220: Engineering Software

2

PS5

• Team requests due tonight by midnight

• Teams of 2-3

3

Remember:

“A simple, object-oriented,

distributed, interpreted, robust,

secure, architecture neutral,

portable, high-performance,

multithreaded, and dynamic

language.”

[Sun95]

4

Concurrent Programming

• Our computer can only do one instruction at a

time, why would we want to program

pretending it can do many things at once?

• Concurrency: having several computations

interleaved or executing simultaneously,

potentially interacting with each other

5

Threading Concept

• Multiple Threads of

execution at once

• One set of shared data

Web
Server
Process

Listen();

Respond();
//
//
//

Listen();
Respond();

//
…

Web
Server
Process

Listen();

Thread();
Listen();
Thread();
Listen();

Respond();
//
//
//

Request

Request

Respond();
//
//
//

6

Concurrent Programming

• Why?

• Some problems are clearer to program

concurrently

– Modularity: Don’t have to explicitly interleave

code for different abstractions (especially: user

interfaces)

– Modeling: Closer map to real world problems:

things in the real world aren’t sequential

7

Simple Example: Counter (in Java)

• One Counter with two operations, increment

and decrement.

• Two Threads, one calls increment, the other

calls decrement.

• After each call, they sleep.

• What do you think will happen?

8

Example: Scheduling Meetings

Alice wants to schedule a meeting with Bob and
Colleen

Bob Alice Colleen“When can

you meet

Friday?”

“When can

you meet

Friday?”

“11am or 3pm”
“9am or 11am”

“Let’s meet

at 11am”

“Let’s meet

at 11am”

Reserves 11am

for meeting

Reserves 11am

for meeting

Picks meeting

time

9

Partial Ordering of Events

• Sequential programs give use a total ordering

of events: everything happens in a

determined order

• Concurrency gives us a partial ordering of

events: we know some things happen before

other things, but not total order

Alice asks to schedule meeting before Bob replies
Alice asks to schedule meeting before Colleen replies
Bob and Colleen both reply before Alice picks meeting time
Alice picks meeting time before Bob reserves time on calendar

10

Race Condition

Bob Alice Colleen“When can

you meet

Friday?”

“When can

you meet

Friday?”

“9, 11am or 3pm”
“9am or 11am”

“Let’s meet

at 11am”

“Let’s meet

at 11am”

Picks meeting

time

Doug

“When can

you meet

Friday?”

“9, 11am or 3pm”

“Let’s meet

at 11am”

Reserves 11am

for Doug

“I’m busy

then…”

11

Preventing Race Conditions

• Use locks to impose ordering constraints

• After responding to Alice, Bob reserves all the

times in his response until he hears back (and

then frees the other times)

12

Locking

Bob Alice Colleen“When can

you meet

Friday?”

“When can

you meet

Friday?”

“9, 11am or 3pm”
“9am or 11am”

“Let’s meet

at 11am”

“Let’s meet

at 11am”

Picks meeting

time

Doug

“When can

you meet

Friday?”

“3pm”

“Let’s meet

at 3”

Locks calendar

13

Deadlocks
Bob Alice Colleen

“When can

you meet

Friday?”

“When can

you meet

Friday?”

“9, 11am or 3pm”

Doug
“When can

you meet

Friday?”

Locks calendar

for Alice, can’t

respond to Doug

“When can

you meet

Friday?”

Locks

calendar

for Doug,

can’t

respond to

Alice

Can’t schedule

meeting, no

response from

Bob

Can’t schedule

meeting, no

response from

Colleen

14

Deadlocks

• Deadlock: when computation has stalled
because execution units are blocked and waiting
on a circular dependency chain. For example,
when 2 or more threads wait for the other’s
response to finish. Therefore, neither does.

– Other examples?

• “When two trains approach each other at a crossing, both shall

come to a full stop and neither shall start up again until the other

has gone.”

—statute passed by the Kansas Legislature (wikipedia)

15

Concurrency in Java

public class Thread implements Runnable {
// OVERVIEW: A thread is a thread of execution in a program.
// The Java Virtual Machine allows an application to have
// multiple threads of execution running concurrently.

public Thread (Runnable target)
// Creates a new Thread object that will run the target.

public void start ()
// Starts a new thread of execution. Calls the target’s run().

… many other methods
}

16

Concurrency in Java

public interface Runnable {

public void run()

When an object implementing interface Runnable is

used to create a thread, starting the thread causes the

object's run method to be called in that separately

executing thread. The general contract of the

method run is that it may take any action

whatsoever.

}

17

Simple Java Example: Counter

• One Counter with two operations, increment

and decrement.

• Two Threads, one calls increment, the other

calls decrement.

• After each call, they sleep.

• What do you think will happen?

18

Why are threads hard?

• Too few ordering constraints: race conditions

• Too many ordering constraints: deadlocks

• Hard/impossible to reason modularly

– If an object is accessible to multiple threads, need to think

about what any of those threads could do at any time!

• Testing is even more impossible than it is for

sequential code

– Even if you test all the inputs, don’t know it will work if

threads run in different order

19

The Dining Philosopher’s Problem

20

The Dining Philosopher’s Problem

• What are the issues to avoid?

– Deadlock

– Starvation

21

The Dining Philosopher’s Problem

• How does it look in Java?

