
Class 18:

Concurrency

on Mars

Fall 2010
UVa

David Evans

cs2220:

Engineering

Software

Image: Michael Dewey-Vogt

Plan for Today

wait and notify

Concurrency on Mars!

Project Time

Scheduling Update:

Exam 2 (originally scheduled for Oct 28-Nov 2) will

now be: Nov 18-Nov 23

Project Team Requests: 11:59pm Friday

Project Idea Proposals: 11:59pm, Wednesday, Nov 3

Project Design Document: Class, Tuesday, Nov 9

Design Reviews: Nov 10-17 (scheduled by team)

Project Progress Reports: Tuesday, Nov 30

Project Demos/Presentations: 7 December (last class)

Synchronizing
synchronized(obj) { code }

Provides mutual exclusion: code inside synchronized
can only run when lock of obj is held

obj.wait()

Gives up lock on obj; puts current thread in
waiting set for obj

obj.notify(), obj.notifyAll()

Don’t give up lock; selects one (notify) or all
(notifyAll) threads in waiting set for obj and
wakes them up (to be scheduled)

Wait, Wait Don’t Notify Me!

public final void wait() throws InterruptedException

Causes the current thread to wait until another thread invokes the notify() method or

the notifyAll() method for this object. In other words, this method behaves exactly as

if it simply performs the call wait(0).

http://download.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29

public final void wait(long timeout) throws InterruptedException

Causes the current thread to wait until either another thread invokes the notify()

method or the notifyAll() method for this object, or a specified amount of time has

elapsed.

public final void notify()

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting

on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at

the discretion of the implementation. A thread waits on an object's monitor by calling one

of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the

lock on this object

wait and notify
Thread A

synchronized (o)

o.wait ()

Thread B

synchronized (o) {

o.notify ()

} // end synchronized
can reclaim o lock

waiting

awake, but not running

wait and notify
Thread A

synchronized (o)

o.wait ()

Thread B

synchronized (o) {

o.notify ()

} // end synchronized

Thread C

synchronized (o)

o.wait ()If multiple threads are waiting

on the same object, any one of

them can be awakened

waiting

still

waiting

w
a

itin
g

awake,

not running

class IncThread extends Thread {

private Counter c;

public IncThread (Counter p_c) { c = p_c; }

public void run () {

while (true) {

synchronized (c) {

c.increment ();

System.err.println ("Running inc thread: " + currentThread () + …);

c.notify ();
} } } }

class DecThread extends Thread {

…

public void run () {

while (true) {

synchronized (c) {

while (c.getValue () <= 0) {

try { c.wait (); } catch (InterruptedException e) { ; }
}

c.decrement ();

System.err.println ("Running dec thread: " + …);

} } } }

Counter c = new Counter ();

IncThread ithread = new IncThread (c);

DecThread dthread = new DecThread (c);

ithread.setPriority (Thread.NORM_PRIORITY);

ithread.start ();

dthread.setPriority (Thread.MAX_PRIORITY);

dthread.start ();

Running inc thread: Thread[Thread-0,5,main] / Value: 1

Running dec thread: Thread[Thread-1,10,main] / Value: 0

Running inc thread: Thread[Thread-0,5,main] / Value: 1

Running dec thread: Thread[Thread-1,10,main] / Value: 0

Running inc thread: Thread[Thread-0,5,main] / Value: 1

Running dec thread: Thread[Thread-1,10,main] / Value: 0

Running inc thread: Thread[Thread-0,5,main] / Value: 1

Running dec thread: Thread[Thread-1,10,main] / Value: 0

Priorities
• In general, threads with higher priorities will be

scheduled preferentially.

• There are no guarantees: up to Java scheduler
Thread class:

void setPriority (int newPriority)

// MODIFIES: this

// EFFECTS: Changes the priority of this

// thread to newPriority.

Priorities, Priorities

ithread.setPriority (Thread.NORM_PRIORITY);

ithread.start ();

dthread.setPriority (Thread.MIN_PRIORITY);

dthread.start ();
The ithread should run more than the

dthread, but there is no guarantee.

Thread.MIN_PRIORITY

Thread.NORM_PRIORITY

Thread.MAX_PRIORITY

Stopping Threads
public class java.lang.Thread {

public final void stop()

Deprecated. This method is inherently unsafe.

Forces the thread to stop executing. …The

thread represented by this thread is forced to

stop whatever it is doing abnormally and to

throw a newly created ThreadDeath object as an

exception. …

Why deprecate stop?

• What should happen to all the locks a thread

owns when it is stopped?

• What if an invariant is temporarily broken in a

method?

Suspending Threads

public final void suspend()

Suspends this thread. If the thread is alive, it is

suspended and makes no further progress unless

and until it is resumed.

Deprecated. This method has been deprecated, as it is inherently

deadlock-prone. If the target thread holds a lock on the monitor

protecting a critical system resource when it is suspended, no

thread can access this resource until the target thread is resumed.

If the thread that would resume the target thread attempts to lock

this monitor prior to calling resume, deadlock results. Such

deadlocks typically manifest themselves as "frozen" processes.

Can’t stop, can’t suspend, what can you do?

public void interrupt()

Interrupts this thread.

If this thread is blocked in an invocation of the wait(),

wait(long), or wait(long, int) methods of the Object class, or

of the join(), join(long), join(long, int), sleep(long), or

sleep(long, int), methods of this class, then its interrupt

status will be cleared and it will receive an

InterruptedException.

…

If none of the previous conditions hold then this thread's

interrupt status will be set.

in java.lang.Thread

Being Interrupted

public boolean isInterrupted()

MODIFIES: nothing

EFFECTS: Returns true iff this thread

has been interrupted.

Counter c = new Counter ();

IncThread ithread = new IncThread (c);

DecThread dthread = new DecThread (c);

ithread.setPriority (Thread.NORM_PRIORITY);

ithread.start ();

dthread.setPriority (Thread.MAX_PRIORITY);

dthread.start ();

dthread.interrupt ();

Interrupts are just

“polite” requests!

The thread can ignore

it and keep going…

Running inc thread: Thread[Thread-0,5,main] / Value: 1

Running dec thread: Thread[Thread-1,10,main] / Value: 0

Running inc thread: Thread[Thread-0,5,main] / Value: 1

Running dec thread: Thread[Thread-1,10,main] / Value: 0

Running inc thread: Thread[Thread-0,5,main] / Value: 1

Running dec thread: Thread[Thread-1,10,main] / Value: 0

Running inc thread: Thread[Thread-0,5,main] / Value: 1

Running dec thread: Thread[Thread-1,10,main] / Value: 0

Mars Pathfinder

Landed on Mars

July 4, 1997

Sojourner Rover

New York Times, 15 July 1997

Mary Beth Murrill, a spokeswoman for NASA's Jet Propulsion

Laboratory, said transmission of the panoramic shot took “a lot

of processing power.” She likened the data overload to what

happens with a personal computer “when we ask it to do too

many things at once.”

The project manager, Brian Muirhead, said that to prevent a

recurrence, controllers would schedule activities one after

another, instead of at the same time. It was the second time

the Pathfinder's computer had reset itself while trying to carry

out several activities at once.

In response, controllers reprogrammed the computer over

the weekend to slow down the rate of activities and avoid

another reset. But today, about an hour into a two-hour

transmission session, it happened again.

Priority-Based Scheduling

Scheduler ensures that the highest priority task

that can run is always running

Lower priority tasks run only when no higher

priority task can run

Standard JavaVM scheduler does not do this, but many

operating Systems for embedded systems do including the

vxWorks used on the PathFinder.

What could go wrong with priority-based scheduling?

Priority Inversion
Low

synchronized(r)

Medium High

Pre-empts

low-priority

thread

synchronized(r)

Waiting on

lock r (held

by low-

priority

task)

Priority Inversion on Mars

Meterological

data task

(low priority)

Bus Management Task

(high priority)

Data collection task

(medium priority)

For details, see Glenn Reeves account:

http://research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html

Solutions?

Priority Inheritance

If a low priority task holds a resource needed by a

high priority task, the low priority task temporarily

inherits the high task’s priority

Priority Ceilings

Associate minimum priorities with resources: only a

high priority task can acquire the lock on an

important resource

As suspected, the Pathfinder computer, struggling

with several activities at once, reset itself each

time it could not carry out low-priority tasks in

the allotted time. A reset is a safety feature

similar to hitting a reset button on a home

computer.

The low-priority task that kept tripping it up was

the transfer of temperature and wind

measurements from sensors to an electronics

board and then into the computer. The solution is

to raise the task's priority through some

reprogramming, Mr. Muirhead said.

Charge

• Computers are single-threaded (or 2/4/8+-

threaded) machines that provide their owner

the illusion of infinite threads.

• Brains are massively multi-threaded machines

that provide their owner with the illusion of a

single thread.

Thread work = new Thread (project);

work.setPriority (Thread.MAX_PRIORITY);

work.start ();

