
Class 20:

Verifying

Bytecodes

Fall 2010
UVa

David Evans

cs2220:

Engineering

Software

Image: Joseph Featherston

Plan for Today

• Project Ideas

• Low-level security: “Type Safety”

• Trusted Computing Base (Voting)

• High-level security: Policy

Project Teams

James Blanton, Sam Herder, Michael Kalish

Jeremy Brown, Klaus Dollhopf, Joseph Featherston, Charles Hern, John Marion

Joseph Borja, Erik Lopez, Brian Noh, Jonathan DiLorenzo

Jiamin Chen, Elisabeth Sparkman, Yixin Sun

Michael Dewey-Vogt

Hanna Oh

Alex Wallace

Recap: Java Platform

javac

Compiler

malcode.java

Java

Source

Code

malcode.class

JVML

Object

Code

JavaVM

Alice User

Bytecode

Verifierif OK

JVML Instruction Set
pushing constants 20 getstatic, putstatic 2

loads, stores 66
newarray, anewarray,

multianewarray,arraylength
4

pop, dup, swap, etc. 9 invoke methods, throw 5

arithmetic 37 new 1

conversion (e.g., i2l) 15 getfield, putfield 2

comparisons (lcmp) 5 checkcast 1

goto, jsr, goto_w, jsr_w, ret 5 instanceof 1

tableswitch, lookupswitch 2 monitorenter, monitorexit 2

returns (e.g., ireturn) 6 wide 1

conditional jumps (ifeq, ifnull,

ifnonnull)
16

nop, breakpoint, unused,

implementation dependent
5

(205 out of 256 possible opcodes used)

Why so many loads and stores?

Instructions are typed

aload <index> load Object from variable index

iload <index> load int from variable index

fload <index> load float from variable index

dload <index> load double from variable index

Minimizing class file size

aload_0, aload_1, aload_2, aload_3

same for other types and stores

Array loads and stores

Even more types (char, boolean, short)

Bytecode Verifier

• Checks class file is formatted correctly

• Checks JVML code satisfies safety properties

Simulates program execution to know types are
correct, but doesn’t need to examine any

instruction more than once

This is what we win by having static typing!

Running Mistyped Code

> java Simple

Exception in thread "main" java.lang.VerifyError:

(class: Simple, method: main signature:

([Ljava/lang/String;)V)

Register 0 contains wrong type

Verifying Safety Properties

Type safe

Stack and variable slots must store and load as same type

Memory safe

Must not attempt to pop more values from stack than are on it

Doesn’t access private fields and methods outside class

implementation

Control flow safe

Jumps must be to valid addresses within function, or

call/return

Wait a sec…

fr
o

m
 C

la
ss

 6
:

Making Verification Easier

Class files include lots

of extra information

to make verification

easier

> javac Simple.java

> javap -verbose -c Simple

public class Simple extends java.lang.Object {

public Simple();

/* Stack=1, Locals=1, Args_size=1 */

public static int add(int, int);

/* Stack=2, Locals=2, Args_size=2 */

}

Method Simple()

0 aload_0

1 invokespecial #1 <Method java.lang.Object()>

4 return

Method int add(int, int)

0 iload_0

1 iload_1

2 iadd

3 ireturn

public class Simple {

static public int add (int a, int b) {

return a + b;

}

}

Even with this help there are many

“correct” JVML programs that

would not pass the verifier! (but

every program produced by Java

compiler should pass)

Trusted Computing Base

javac

Compiler

malcode.java

Java

Source

Code

malcode.class

JVML

Object

Code

JavaVM

Alice User

Bytecode

Verifierif OK

Project Ideas

Project Teams

James Blanton, Sam Herder, Michael Kalish

Jeremy Brown, Klaus Dollhopf, Joseph Featherston,

Charles Hern, John Marion

Joseph Borja, Erik Lopez, Brian Noh, Jonathan DiLorenzo

Jiamin Chen, Elisabeth Sparkman, Yixin Sun

Michael Dewey-Vogt

Hanna Oh

Alex Wallace

Voting
What is the Trusted Computing

Base for an election?

“We do have people complain and

say they don’t get it, I completely

understand what they’re saying, but

it’s not something I can control.”

Sheri Iachetta,

Charlottesville general registrar (on

2006 problems with voting machines

displaying “James H. ‘Jim’”)

www.sbe.virginia.gov/cms/Election_Information/Election_Procedures/Index.html

How do I know my voting equipment is accurate?

Under the Code of Virginia, the State Board of Elections must

approve any mechanical or electronic voting system or

equipment before it can be used by any locality.

Each system must successfully complete three distinct levels

of testing:

1. Qualification testing (testing of hardware and software

that may be conducted by Independent Testing Authority);

2. Certification testing (to ensure it meets all applicable

requirements of the Code of Virginia); and,

3. Acceptance testing (conducted by the locality to assure it

meets their needs and is identical to the certified system).

“Independent” Testing

• Done by ITAs paid by vendors

• No vulnerability analysis

• No source code analysis

“Program testing can be used to show the presence of

bugs, but never to show their absence!”

Edsger W. Dijkstra

How could we design elections with

smaller Trusted Computing Base?

Optical Scan ballots

Can be recounted by humans

Project Ideas

Project Teams

James Blanton, Sam Herder, Michael Kalish

Jeremy Brown, Klaus Dollhopf, Joseph Featherston,

Charles Hern, John Marion

Joseph Borja, Erik Lopez, Brian Noh, Jonathan DiLorenzo

Jiamin Chen, Elisabeth Sparkman, Yixin Sun

Michael Dewey-Vogt

Hanna Oh

Alex Wallace

Java

Applet

Security

Program Execution

Program
Monitor

Speakers

SuperSoaker 2000
Disk

Memory

Network

Program Execution

Program
Monitor

Speakers

SuperSoaker 2000
Disk

Memory

Network

Reference Monitor

Ideal Reference Monitor

1. Sees everything a program is about to do

before it does it

2. Can instantly and completely stop program

execution (or prevent action)

3. Has no other effect on the program or

system

Can we build this?

Probably not unless we can build a time machine...

Ideal Reference Monitor

1. Sees everything a program is about to do

before it does it

2. Can instantly and completely stop program

execution (or prevent action)

3. Has no other effect on the program or

system

Operating Systems

• Provide reference monitors for most security-
critical resources
– When a program opens a file in Unix or Windows,

the OS checks that the principal running the
program can open that file

• Doesn’t allow different policies for different
programs

• No flexibility over what is monitored
– OS decides for everyone

– Hence, can’t monitor inexpensive operations

Java Security Manager

• (Non-Ideal) Reference monitor

– Limits how Java executions can manipulate system

resources

• User/host application creates a subclass of

SecurityManager to define a policy

JavaVM Policy Enforcment

From java.io.File:

public boolean delete() {

SecurityManager security =

System.getSecurityManager();

if (security != null) {

security.checkDelete(path);

}

if (isDirectory()) return rmdir0();

else return delete0();

}

[JDK 1.0 – JDK 1.1]

What could go seriously wrong with this?!

checkDelete throws a SecurityExecption

if the delete would violate the policy (re-

thrown by delete)

HotJava’s Policy (JDK 1.1.7)

public class AppletSecurity

extends SecurityManager {

...

public synchronized void checkDelete(String file)

throws Security Exception {

checkWrite(file);

}

}

AppletSecurity.checkWrite
(some exception handling code removed)

public synchronized void checkWrite(String file) {

if (inApplet()) {

if (!initACL) initializeACLs();

String realPath = (new File(file)).getCanonicalPath();

for (int i = writeACL.length ; i-- > 0 ;) {

if (realPath.startsWith(writeACL[i])) return;

}

throw new AppletSecurityException

("checkwrite", file, realPath);

}

}
Note: no checking if not inApplet!

Very important this does the right thing.

inApplet
boolean inApplet() {

return inClassLoader();

}

Inherited from java.lang.SecurityManager:

protected boolean inClassLoader() {

return currentClassLoader() != null;

}

currentClassLoader
/**

Returns an object describing the most recent class

loader executing on the stack.

Returns the class loader of the most recent occurrence

on the stack of a method from a class defined using a

class loader; returns null if there is no occurrence on

the stack of a method from a class defined using a class

loader.

*/

protected native ClassLoader currentClassLoader();

Recap
• java.io.File.delete calls

SecurityManager.checkDelete before deleting

• HotJava overrides SecurityManager with

AppletSecurity to set policy

• AppletSecurity.checkDelete calls

AppletSecurity.checkWrite

• AppletSecurity.checkWrite checks if any method on

stack has a ClassLoader

• If not, no checks; if it does, checks ACL list

JDK 1.0 Trust Model

• When JavaVM loads a class from the

CLASSPATH, it has no associated ClassLoader

(can do anything)

• When JavaVM loads a class from elsewhere

(e.g., the web), it has an associated

ClassLoader

JDK Evolution

• JDK 1.1: Signed classes from elsewhere and

have no associated ClassLoader

• JDK 1.2:

– Different classes can have different policies based

on ClassLoader

– Explict enable/disable/check privileges

– SecurityManager is now AccessController

Policy and Mechanism

• AccessController provides a mechanisms for

enforcing a security policy

– Can insert checking code before certain

operations are allowed

• A security policy determines what the

checking code allows

Android Permissions Charge

Only ask for the Brick permission if you really

need it!

Only grant the Brick permission to code that you

really trust!

“It’s better to beg forgiveness than ask permission.”

Grace Hopper
(Applies to most things, but not Java applets.)

