cs2220: Engineering Software

Class 28: Past and Future

Fall 2010
UVa
David Evans
Menu

• One Word Course Summary
• Is this a Computer Science course?
• Presentations Tuesday
• Parenthesizing
One Word Course Summary?
Abstraction

Adapted from Gerard Holzmann’s FSE Slides
Abstraction in cs2220

Abstraction by Specification
Abstract away *how* by saying *what* a procedure does

Procedural Abstraction
Abstract away specific *inputs* from *what* is done

Data Abstraction
Abstract away *representation* details by specifying what you can do with something

Subtyping
Abstract away actual type details by allowing many types to be used in the same way

Concurrency Abstraction
Abstract away (some) *when* details
Is cs2220 a Computer Science course?
Geometry vs. Computer Science

• Geometry (mathematics) is about *declarative* knowledge: “what is”

 If now \(CD \) measures \(AB \), since it also measures itself, then \(CD \) is a common measure of \(CD \) and \(AB \)

• Computer Science is about *imperative* knowledge: “how to”
Computer Science

“How to” knowledge:

• Ways of describing information processes (computations)
 Language

• Ways of predicting properties of information processes
 Logic

What kinds of things do we want to predict?

• Ways of executing information processes
 Machines

cs1120 Class 1
Project Deliverables

- **Project Demos/Presentations**: Tuesday, 7 December (last class)
- **Project Final Reports and Teammate Assessments**: 11:59pm, Friday, 10 December
Project Presentations

• Like all good presentations, your presentation should *tell a story* not *convey a list*.
 – Find a way to present a coherent and compelling story, not just list what you have done!
 – Provide a clear motivation for the software you have built, explain what problem it solves, and show how someone would use it to solve that problem.

• Your presentation should be *prepared*. There should be a plan for how you will use your time effectively to get the main points across well and how to fit in what you say with your demo.

Up to 10 minutes per team.
Project Reports

• Due by 11:59pm Friday, 10 December
• **Zip file** containing all of your code
• A single **PDF file** or **paper document**:
 – An updated description of your project idea.
 – An updated design document.
 – A description of your testing strategy,
 – An explanation of what is working and what problems remain. For the problems, explain as much as you understand what the problem is.

If you do an **excellent project presentation** Tuesday (including a working demo of your project) your team **does not need to submit a project report!** (You will be notified shortly after class Tuesday.)
Parenthesizing Question

Given an arithmetic expression involving addition, subtraction, and multiplication of natural numbers, add parentheses to maximize the value of the expression.

Input: String e

Output: String

\[5 + 7 \times 8 - 3 + 4 \times 3 \]

\[["5", "+", "7", "+", "8", "+", "3", "+", "4", "+", "3"] \]

\[5 \times 8 - 3 + (4 \times 3) \]

\[(5 + 7) \times (8 - 3 + 4 \times 3) \]

(with parentheses added)
public class ExpressionTree {

 // OVERVIEW: An immutable expression tree. A typical
 // ExpressionTree is:
 // [T ⇒ < T, op, T >]
 // [T ⇒ Number]
 // [op ⇒ "+", "*"]
 // private ExpTree left, right
 // private int val;
 // private Operator op;

 public ExpressionTree (String s) {
 // REQUIRES: s is a valid string
 // EFFECTS: initializes this to the
 // value-maximizing tree from s.

 public ExpressionTree (int val) {

 public ExpressionTree (ExpTree t1, Op pop, ExpTree t2)
 left = t1; right = t2; op = pop;
public int value () {
 if (isLeaf()) {
 return val;
 } else {
 return op.value(left.value(), right.value());
 }
}

public class Operator {
 public int value(int a, int b) {
 return a op b;
 }
}