
cs2220: Engineering Software

Class 5:

Validation

Fall 2010

University of Virginia

David Evans

Menu

PS2 Questions

ArrayList

Software Validation

List Datatype

Lists in Scheme:

What are the elements of a List?

Either (1) null

or (2) a Pair whose second part is a List

Statically-Typed Lists

In Java, every variable must have a statically-

declared type: the elements in a list can’t just

be “anything”, we need to declare what type

they are.

java.util.ArrayList is a Parameterized Type

ArrayList<String> a = new ArrayList<String>();

a.add(“Hello”);

String hello = a.get(0);

import java.util.ArrayList;

public class TypesExample {

public static void main(String[] args) {

ArrayList<String> as = new ArrayList<String>();

ArrayList<Object> ao = new ArrayList<Object>();

ArrayList<ArrayList<String>> aas

= new ArrayList<ArrayList<String>>();

aas.add(as);

aas.add(ao);

as.add("Hello");

ao.add("Hello");

String el = as.get(0);

el = ao.get(0);

el = aas.get(0).get(0);

System.out.println(el);

}

}

Java Collection Types

java.util.List<E>

java.util.ArrayList<E>

Closest to Scheme and Python lists

java.util.Set<E>

java.util.TreeSet<E>

java.util.HashMap<K, V>

Similar to Python Dictionary type

Using HashMappackage ps2;

import java.util.HashMap;

import java.util.Set;

/**

* TallyTable provides an abstraction that maps a String to an integer value.

* Initially, the count associated with every string is 0.

*/

public class TallyTable {

private HashMap<String,Integer> map;

public TallyTable() { map = new HashMap<String,Integer>(); }

public void tally(String w) { map.put(w, getTally(w) + 1); }

public int getTally(String w) {

if (map.containsKey(w)) { return map.get(w); }

else { return 0; }

}

…

}

Validation

Dictionary Definition

val·i·date

1. To declare or make legally valid.

2. To mark with an indication of official

sanction.

3. To establish the soundness of;

corroborate.

Can we do any of these with software?

Java’s License

READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED

SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY "AGREEMENT")

CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA

PACKAGE. BY OPENING THE SOFTWARE MEDIA PACKAGE, YOU

AGREE TO THE TERMS OF THIS AGREEMENT. IF YOU ARE

ACCESSING THE SOFTWARE ELECTRONICALLY, INDICATE YOUR

ACCEPTANCE OF THESE TERMS BY SELECTING THE "ACCEPT"

BUTTON AT THE END OF THIS AGREEMENT. IF YOU DO NOT AGREE

TO ALL THESE TERMS, PROMPTLY RETURN THE UNUSED

SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR, IF

THE SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE

"DECLINE" BUTTON AT THE END OF THIS AGREEMENT.

Java’s License

5. LIMITATION OF LIABILITY. TO THE EXTENT NOT

PROHIBITED BY LAW, IN NO EVENT WILL SUN OR

ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE,

PROFIT OR DATA, OR FOR SPECIAL, INDIRECT,

CONSEQUENTIAL, INCIDENTAL OR PUNITIVE

DAMAGES, HOWEVER CAUSED REGARDLESS OF

THE THEORY OF LIABILITY, ARISING OUT OF OR

RELATED TO THE USE OF OR INABILITY TO USE

SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES. …

Java’s License

2. RESTRICTIONS. … Unless enforcement is

prohibited by applicable law, you may not

modify, decompile, or reverse engineer

Software. You acknowledge that Software

is not designed, licensed or intended for

use in the design, construction, operation

or maintenance of any nuclear facility. Sun

disclaims any express or implied warranty

of fitness for such uses.

Software Validation

Process designed to increase our confidence that

a program works as intended

For complex programs, guarantees are very

unusual

This is why typical software licenses don’t make

any claims about their program working

Increasing Confidence

Testing

Run the program on set of inputs and check the results

Verification

Argue formally or informally that the program always

works as intended

Analysis

Poor programmer’s verification: examine the source

code to increase confidence that it works as intended

Testing and Fishing

Using some

successful tests

to conclude that

a program has

no bugs, is like

concluding there

are no fish in the

lake because you

didn’t catch one!

flickr cc: gsankary

Exhaustive Testing

Test all possible inputs

PS1: void accelerateSong(String tune, int repeats, int tempo, double rate)

How many inputs?

How many possible strings?

Integer.MAX_VALUE = 231 - 1

Number of different characters (1 byte) = 28

Number of possible strings:

Selective Testing

We can’t test everything, pick test cases with

high probability of finding flaws

Black-Box Testing: design tests looking only at

specification

Glass-Box Testing: design tests looking at code

Path-complete: at least one test to exercise each

path through code

Black-Box Testing

Test all paths through the specification

public void insert(String word)

REQUIRES: word does not contain a '/' character (this is necessary

because currentWindow uses '/' to separate words in its

result.

MODIFIES: this

EFFECTS: If word is non-null and non-empty, adds word as the

newest element in this. If this already has size elements,

removes the oldest element in this. If word is null or

empty, does nothing.

fr
o

m
 W

o
rd

W
in

d
o

w

Black-Box Testing

Test all paths through the specification

public void insert(String word)

REQUIRES: word does not contain a '/' character (this is necessary

because currentWindow uses '/' to separate words in its

result.

MODIFIES: this

EFFECTS: If word is non-null and non-empty, adds word as the

newest element in this. If this already has size elements,

removes the oldest element in this. If word is null or

empty, does nothing.

1. Word is non-null and non-empty, this has size elements.

2. Word is non-null and non-empty, this has fewer than size elements.

3. Word is null.

4. Word is empty.

Black-Box Testing

Test all paths through the specification

public void insert(String word)

REQUIRES: word does not contain a '/' character (this is necessary

because currentWindow uses '/' to separate words in its

result.

MODIFIES: this

EFFECTS: If word is non-null and non-empty, adds word as the

newest element in this. If this already has size elements,

removes the oldest element in this. If word is null or

empty, does nothing.

1. Word is non-null and non-empty, this has size elements.

2. Word is non-null and non-empty, this has fewer than size elements.

3. Word is null.

4. Word is empty.

Test boundary cases

1. this is empty

Glass-Box Testing
public void insert(String word) {

if (word == null || word.length() == 0) {

return;

}

assert !word.contains("/");

words[index++] = word;

if (index == words.length) index = 0;

// System.out.println("Insert: " + word + " ==> " + currentWindow());

}

How many paths are

there through this code?

public void insert(String word)

REQUIRES: word does not contain a '/' character (this is necessary

because currentWindow uses '/' to separate words in its

result.

MODIFIES: this

EFFECTS: If word is non-null and non-empty, adds word as the

newest element in this. If this already has size elements,

removes the oldest element in this. If word is null or

empty, does nothing.

Glass-Box Testing: determine test strategy and test cases based on

examining the implementation code

Glass-Box Testing
public void insert(String word) {

if (word == null || word.length() == 0) {

return;

}

assert !word.contains("/");

words[index++] = word;

if (index == words.length) index = 0;

// System.out.println("Insert: " + word + " ==> " + currentWindow());

}

How many paths are there through this code?

Note: there is no shame in using println statements to debug your code!

Unless it is too much clutter, leave them in the code as comments.

WordWindow Representation

public class WordWindow {

// To avoid moving elements, we maintain an index into a fixed array, and

// cycle through the array with each new element.

private String words[]; // Array of the current words in the queue

private int index; // Index of the last element

// INVARIANT: 0 <= i < words.length

public void insert(String word) {

if (word == null || word.length() == 0) {

return;

}

assert !word.contains("/");

words[index++] = word;

if (index == words.length) index = 0;

// System.out.println("Insert: " + word + " ==> " + currentWindow());

}

Example: currentWindow
public String currentWindow()

EFFECTS: Returns a single String representation of the currentWindow which

is the concatenation of all the words in order from oldest to newest,

separated by '/’ characters.

What would be good Black-Box test cases?

Example: currentWindow
public String currentWindow() {

String res = "";

boolean first = true;

for (int i = index; i < index + words.length; i++) {

if (first) {

first = false;

} else {

res = res + "/";

}

String word = words[i % words.length];

if (word != null) { // no word, just leave "/"s

res = res + word;

}

}

return res;

}

How paths tmany hrough this code?

Charge

PS2: Due Thursday

– My office hours: Wednesday, noon-1pm; Thursday,

11am-noon

– Robbie’s help hours: Wednesday, 2-3:30pm; 5-6:30pm

• For PS2, you should think about how to test your

program (but it is not an explicit question for PS2)

• For PS3, you will need to describe a testing

strategy

Next class: Is it really hopeless?

