
cs2220: Engineering Software

Class 7:

Data Abstraction

Fall 2010

University of Virginia

David Evans

Menu

Data Abstraction

Specifying Abstract Data Types

PS2

Implementing Abstract Data Types

Managing Complexity

Procedural Abstraction

Divide problem into procedures

Use specifications to separate what from how

A big program can have thousands of procedures

Data Abstraction

Organize program around abstract data types

Group procedures by the data they

manipulate

Hide how data is represented from how it is

used

Abstract Data Types

Separate what you can do with data from how it

is represented

Client interacts with data through provided

operations according to their specifications

Implementation chooses how to represent data

and implement its operations

What should the specification of a datatype do?

Specifying Abstract Data Types

Overview: what does the type represent

Mutability/Immutability

e.g., A String is an immutable sequence of characters.

Introduce Abstract Notation

e.g., A typical Set is { x1, …, xn }.

Operations: specifications for constructors and

methods clients use

Describe in terms of abstract notation introduced

in overview.

Example: StringStack
Note: Java provides java.util.Stack,

but we’ll implement our own Stack datatype.

public class StringStack

OVERVIEW: A StringStack represents a mutable last-in-first-out stack

where all elements are Strings.

A typical stack is [e_n-1, e_n-2, ..., e_1, e_0] where e_n-1 is the

top of the stack.

public class StringStack

OVERVIEW: A StringStack represents a mutable last-in-first-out stack where all

elements are Strings.

A typical stack is [e_n-1, e_n-2, ..., e_1, e_0] where e_n-1 is the top of the stack.

public StringStack()

EFFECTS: Initializes this as an empty stack.

public void push(String s)

MODIFIES: this

EFFECTS: Pushes s on the top of this.

For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

this_post = [s, e_n-1, e_n-2, ..., e_1, e_0]

public String pop() throws EmptyStackException

MODIFIES: this

EFFECTS: If this is empty, throws EmptyStackException. Otherwise,

returns the element on top of this and removes that element from this.

For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

this_post = [e_n-2, ..., e_1, e_0] and the result is e_n-1.

public String toString()

EFFECTS: Returns a string representation of this.

Components of Data Abstractions

Ways to create new objects of the type

– Creators: create new objects of the ADT from

parameters of other types

– Producers: create new objects of the ADT from

parameters of the ADT type (and other types)

Ways to observe properties: observers

Ways to change properties: mutators

Which of these must all (useful) types have?

public class StringStack

OVERVIEW: A StringStack represents a mutable last-in-first-out stack where all

elements are Strings.

A typical stack is [e_n-1, e_n-2, ..., e_1, e_0] where e_n-1 is the top of the stack.

public StringStack()

EFFECTS: Initializes this as an empty stack.

public void push(String s)

MODIFIES: this

EFFECTS: Pushes s on the top of this.

For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

this_post = [s, e_n-1, e_n-2, ..., e_1, e_0]

public String pop() throws EmptyStackException

MODIFIES: this

EFFECTS: If this is empty, throws EmptyStackException. Otherwise,

returns the element on top of this and removes that element from this.

For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

this_post = [e_n-2, ..., e_1, e_0] and the result is e_n-1.

public String toString()

EFFECTS: Returns a string representation of this.

Creator

Constructor

Mutator

Observer and Mutator

Observer

public class StringStack

OVERVIEW: A StringStack represents a mutable last-in-first-out stack where all

elements are Strings.

A typical stack is [e_n-1, e_n-2, ..., e_1, e_0] where e_n-1 is the top of the stack.

public StringStack()

EFFECTS: Initializes this as an empty stack.

public void push(String s)

MODIFIES: this

EFFECTS: Pushes s on the top of this.

For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

this_post = [s, e_n-1, e_n-2, ..., e_1, e_0]

public String pop() throws EmptyStackException

MODIFIES: this

EFFECTS: If this is empty, throws EmptyStackException. Otherwise,

returns the element on top of this and removes that element from this.

For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

this_post = [e_n-2, ..., e_1, e_0] and the result is e_n-1.

public String toString()

EFFECTS: Returns a string representation of this.

Using Abstract Data Types

• PS1, PS2

• Client interacts with data type using the

methods as described in the specification

• Client does not know the concrete

representation

Problem Set 2

Question 1, 2:

public static void sort(int[] a)

Specification A

From the Java SE 6 Platform API documentation:

Sorts the specified array of ints into ascending

numerical order. The sorting algorithm is a tuned

quicksort, adapted from Jon L. Bentley and M.

Douglas McIlroy’s “Engineering a Sort Function”,

Software-Practice and Experience, Vol. 23(11) P.

1249-1265 (November 1993). This algorithm

offers n*log(n) performance on many data sets

that cause other quicksorts to degrade to

quadratic performance.

Parameters:

a – the array to be sorted.

Specification B

MODIFIES: a

EFFECTS: Rearranges the elements

of a into ascending order.

e.g., if a = [3, 1, 6, 1],

a_post = [1, 1, 3, 6]

Shorter

Easy to see that a is modified

Declarative

Provides an Example

Doesn’t overconstrain

implementation

Might be a hint how code is guaranteed to perform: when you

need to know about performance on some unknown JVM

Running Time

“This algorithm offers n*log(n) performance on many data sets

that cause other quicksorts to degrade to quadratic

performance.”

Problems with this statement:

1. n is not defined (n = a.length)

2. “performance” is not a meaningful unit. Should be

“running time in Θ(n log n) …”

3. many data sets?

Specifying Histogram
public static int [] histogram (int [] a)

{

int maxval = 0;

for (int i = 0; i < a.length; i++) {

if (a[i] > maxval) {

maxval = a[i];

}

}

int histo [] = new int [maxval + 1];

for (int i = 0; i < a.length; i++) {

histo[a[i]]++;

}

return histo;

}
REQUIRES: a is non-null and all values in a are non-negative.

EFFECTS: Returns an array, result, where result[x] is the

number of times x appears in a. The result array has

maxval(a) + 1 elements. For example,

histogram ([1, 1, 2, 5]) = [0, 2, 1, 0, 0, 1]

Goals for a procedure specification:

1. Declarative

2. Complete

3. Clear, precise, unambiguous

Objective, attainable

Subjective, unattainable in English

but we try!

REQUIRES: a is non-null

EFFECTS: Goes through the input array a, counting the

number of times each element appears. Returns an

array giving the histogram.

Question 4: Remove Preconditions
REQUIRES: a is non-null and all values in a are non-negative.

EFFECTS: Returns an array, result, where result[x] is the

number of times x appears in a. The result array has

maxval(a) + 1 elements. For example,

histogram ([1, 1, 2, 5]) = [0, 2, 1, 0, 0, 1]

Remove the preconditions by using Exceptions:

public static int [] histogram (int [] a) throws NegativeValue

EFFECTS: If a contains any negative values, throws

NegativeValue. If a is null, throws a NullPointerException.

Otherwise, returns an array, result, … (same as before)

Question 5: Make it Total
REQUIRES: a is non-null and all values in a are non-negative.

EFFECTS: Returns an array, result, where result[x] is the

number of times x appears in a. The result array has

maxval(a) + 1 elements. For example,

histogram ([1, 1, 2, 5]) = [0, 2, 1, 0, 0, 1]

Total: a function that is defined for all inputs

In Java: produce an output, not an exception, for all inputs

public static int [] histogram (int [] a)

EFFECTS: If a is null, returns []. Otherwise, returns an array,

result, where result[minValue(a) + x] is the number of

times x appears in a and minValue(a) is the lowest value

in a. The result array has maxValue(a) - minValue(a) + 1

elements. For example,

histogram ([1, 1, 2, 5]) = [2, 1, 0, 0, 1]

histogram ([-2, 0, 1, -2]) = [2, 0, 1, 1]

Is there a better solution?

Question 5: Make it Total

public static java.util.HashMap<Integer,Integer> histogram (int [] a)

EFFECTS: Returns a HashMap where the value associated with x is

the result is the number of times x appears in a. That is, if

result.containsKey (x) the number of appearances of x in a is

result.get (x). Otherwise, the number of appearances of x in a is 0.

Question 6

Problem 6. Write a program that takes as input a list of file names and outputs a list

of pairs of files sorted by the number of 3-length sequences they have in common.

// imports removed

public class CompareDocuments {

public static void main(String[] args) {

ArrayList<Document> docs = new ArrayList<Document> ();

LabeledGraph g = new LabeledGraph();

for (String file : args) {

Document d;

try {

d = new Document(file, 3);

docs.add(d);

g.addNode(file);

} catch (FileNotFoundException fnfe) { System.err.println("Error: cannot open file: " + file + " [" + fnfe + "]");

} catch (DuplicateNodeException e) { System.err.println("Error: duplicate file: " + file); }

}

for (int i = 0; i < docs.size(); i++) {

Set<String> keys = docs.get(i).keys();

for (int j = i + 1; j < docs.size(); j++) {

int similarity = 0;

for (String key : keys) { if (docs.get(j).contains(key)) { similarity++; } }

if (similarity > 0) {

try {

g.addEdge(docs.get(i).getName(), docs.get(j).getName(), similarity);

} catch (NoNodeException e) { assert false;

} catch (DuplicateEdgeException e) { assert false; }

}

} // for j

} // for i

ArrayList<EdgeRecord> edges = g.getSortedEdges();

System.out.println ("Common Sequences: " + edges);

}

}

This code is formatted densely to

fit on one slide! Your code should

be more spacious.

for (String key : keys) {

if (docs.get(j).contains(key)) {

similarity++;

}

}

import ps2.*;

import java.io.FileNotFoundException;

import java.util.ArrayList;

import java.util.Set;

public class CompareDocuments {

public static void main(String[] args) {

int window = 3;

ArrayList<Document> docs = new ArrayList<Document> ();

LabeledGraph g = new LabeledGraph();

for (String file : args) {

Document d;

try {

d = new Document(file, window);

docs.add(d);

g.addNode(file);

} catch (FileNotFoundException fnfe) {

System.err.println("Error: cannot open file: " + file + " [" + fnfe + "]");

} catch (DuplicateNodeException e) {

System.err.println("Error: duplicate file: " + file);

}

}

for (int i = 0; i < docs.size(); i++) {

Set<String> keys = docs.get(i).keys();

for (int j = i + 1; j < docs.size(); j++) {

int similarity = 0;

for (String key : keys) {

if (docs.get(j).contains(key)) {

// System.out.println(docs.get(i).getName() + " <-> " + docs.get(j).getName() + ": " + key);

similarity++;

}

}

if (similarity > 0) {

try {

g.addEdge(docs.get(i).getName(), docs.get(j).getName(), similarity);

} catch (NoNodeException e) {

assert false;

} catch (DuplicateEdgeException e) {

assert false;

}

}

} // for j

} // for i

ArrayList<EdgeRecord> edges = g.getSortedEdges();

System.out.println ("Common Sequences: " + edges);

}

}

