
David Evans
http://www.cs.virginia.edu/evans

cs302: Theory of Computation

University of Virginia

Computer Science

Lecture 14: Lecture 14:

ChurchChurch--Turing ThesisTuring Thesis

Reminder: PS4 is due Tuesday

Alonzo Church (1903-1995) Alan Turing (1912-1954)

2Lecture 14: Church-Turing Thesis

Menu

• Finish computing model for TM

• The Most Bogus Sentence

• Robustness of TM Model (Church-Turing

Thesis)

3Lecture 14: Church-Turing Thesis

Turing Machine

. . .

Infinite tape: Γ*

Tape head: read current square on tape,

write into current square,

move one square left or right

FSM: like PDA, except:

transitions also include direction (left/right)

final accepting and rejecting states

FSM

4Lecture 14: Church-Turing Thesis

Turing Machine Formal Description

. . .

FSM

7-tuple: (Q, Σ, Γ, δ, q0, qaccept, qreject)

Q: finite set of states

Σ: input alphabet (cannot include blank symbol, _)

Γ: tape alphabet, includes Σ and _

δ: transition function: Q × Γ → Q × Γ × {L, R}

q0: start state, q0 ∈ Q

qaccept: accepting state, qaccept ∈ Q

qreject: rejecting state, qreject ∈ Q (Sipser’s notation)

5Lecture 14: Church-Turing Thesis

Turing Machine Computing Model

. . .

FSM

q0

input

_ _ _ _

blanks

Initial configuration:

x x x x x x x

x∈Σ

TM Configuration: Γ* × Q × Γ*

tape contents

left of head

tape contents

head and right

current

FSM state

6Lecture 14: Church-Turing Thesis

TM Computing Model

δ*: Γ* × Q × Γ* → Γ* × Q × Γ*

δ*(L, qaccept, R) → (L, qaccept, R)

δ*(L, qreject, R) → (L, qreject, R)

The qaccept and qreject states are final:

7Lecture 14: Church-Turing Thesis

TM Computing Model
δ*: Γ* × Q × Γ* → Γ* × Q × Γ*

. . .

FSM

q

a

u, v ∈ Γ*, a, b ∈ Γ

u

b

v

δ*(ua, q, bv) = δ*(uac, qr, v) if δ(q, b) = (qr, c, R)

δ*(ua, q, bv) = δ*(u, qr, acv) if δ(q, b) = (qr, c, L)

Also: need a rule to cover what happens at left edge of tape

8Lecture 14: Church-Turing Thesis

TM Computing Model
δ*: Γ* × Q × Γ* → Γ* × Q × Γ*

. . .

FSM
q

a

u, v ∈ Γ*, a, b ∈ Γ

u

b

v

δ*(ua, q, bv) = δ*(uac, qr, v) if δ(q, b) = (qr, c, R)

δ*(ua, q, bv) = δ*(u, qr, acv) if δ(q, b) = (qr, c, L)

δ*(ε, q, bv) = δ*(ε, qr, cv) if δ(q, b) = (qr, c, L)

Do we need a rule for the right edge of the tape?

9Lecture 14: Church-Turing Thesis

TM Computing Model

δ*: Γ* × Q × Γ* → Γ* × Q × Γ*

A string w is in the language of Turing

Machine T if

δ*(ε, q0, w) = (α, qaccept,β)

A string w is not in the language of

Turing Machine T if

δ*(ε, q0, w) = (α, qreject,β)

Does this cover all possibilities?

10Lecture 14: Church-Turing Thesis

Termination

• DFAs, DPDAs:

– Consume one input symbol each step

– Must terminate

• NFAs:

– Equivalent to DFA: must terminate

• Turing Machine:

– Can move left and right: no “progress” guarantee

11Lecture 14: Church-Turing Thesis

Possible Outcomes

1. Running TM M on input w eventually leads

to qaccept.

2. Running TM M on input w eventually leads

to qreject.

3. Running TM M on input w runs forever

(never terminates).

12Lecture 14: Church-Turing Thesis

Recognizing vs. Deciding

• Turing-recognizable: A language L is “Turing-
recognizable” if there exists a TM M such that for all
strings w:

– If w ∈ L eventually M enters qaccept

– If w ∉ L either M enters qreject

or M never terminates

• Turing-decidable: A language L is “decidable” if
there exists a TM M such that for all strings w:

– If w ∈ L, M enters qaccept.

– If w ∉ L, M enters qreject.

13Lecture 14: Church-Turing Thesis

Decider vs. Recognizer?

Deciders always

terminate.

Recognizers can

run forever without

deciding.

14Lecture 14: Church-Turing Thesis

Decidable and Recognizable Languages

Decidable

Recognizable

Do we know

this picture is

right yet?

15Lecture 14: Church-Turing Thesis

The Most Bogus Sentence Guesses
• “Intuitive notion of algorithms equals Turing machine algorithms.”

• “Some of these models are very much like Turing machines, but
others are quite different.”

• “Think of these as 'virtual' tapes and heads,” on page 149. The
quotation marks around virtual imply that the tapes and heads
are not virtual, which is false.

• “If you feel the need to review nondeterminism, turn to Section
1.2 (page 47).” (By this point, one should have a firm grasp of
nondeterminism.)

• “Proving an algorithm doesn't exist requires having a clear
definition of algorithm.”

• “For mathematicians of that period to come to this conclusion
[(Hilbert’s 10th Problem’s accepted solution)] with their intuitive
concept of algorithm would have been virtually impossible.”

I don’t find any of these statement bogus.

16Lecture 14: Church-Turing Thesis

A bogus sentence (but not the one I

had in mind)

• “To show that two models are equivalent

we simply need to show that we can

simulate one by the other.”

A B

For set equivalence, need to show A ⊆ B and B ⊆ A.

For machine equivalence, need to show

A can simulate B and B can simulate A.

Winner: David Horres

17Lecture 14: Church-Turing Thesis

The Most Bogus Sentence

“A Turning machine can do everything a

real computer can do.”

Winners: Erin Carson, Emily Lam, Ruixin Yang,

On the first page!

18Lecture 14: Church-Turing Thesis

Things Real Computers Can Do

Generate Heat

Stop a Door

Provide an

adequate habitat

for fish

19Lecture 14: Church-Turing Thesis

Computational Thing Most Real

Computers Can Do (that Turing

Machines can’t)

Generate randomness

20Lecture 14: Church-Turing Thesis

Church-Turing Thesis

21Lecture 14: Church-Turing Thesis

Alonzo Church’s “Less Successful”

PhD Students

Martin Davis
Stephen Kleene

See http://www.genealogy.ams.org/id.php?id=8011 for full list

Raymond Smullyan

Hartley Rogers
Michael Rabin

Dana Scott
John Kemeny

22Lecture 14: Church-Turing Thesis

Alan Turing (1912-1954)
• Published On Computable

Numbers, with an Application to
the Entscheidungsproblem (1936)
– Introduced the Halting Problem

– Formal model of computation

(now known as “Turing Machine”)

• Codebreaker at Bletchley Park
– Involved in breaking Enigma Cipher

• After the war: convicted of
homosexuality (then a crime in Britain),
committed suicide eating cyanide apple

23Lecture 14: Church-Turing Thesis 24Lecture 14: Church-Turing Thesis

Church-Turing Thesis

• As stated by Kleene:

Every effectively calculable function (effectively

decidable predicate) is general recursive.

“Since a precise mathematical definition of the

term effectively calculable (effectively

decidable) has been wanting, we can take this

thesis ... as a definition of it...”

Yes, this is circular: everything calculable can be computed by a TM,

and we define what is calculable as what can be computed by a TM.

25Lecture 14: Church-Turing Thesis

Church-Turing Thesis

• Any mechanical computation can be performed by a Turing

Machine

• There is a TM-n corresponding to every computable problem

• We can model any mechanical computer with a TM

• The set of languages that can be decided by a TM is identical to

the set of languages that can be decided by any mechanical

computing machine

• If there is no TM that decides problem P, there is no algorithm

that solves problem P.

All of these statements are implied by the Church-Turing thesis

26Lecture 14: Church-Turing Thesis

Examples

• [Last class and PS4] Equivalence of TM and 2-stack
deterministic PDA + ε-transitions

• [PS4] Making the tape infinite in both directions adds no power

• [Soon] Adding a second tape adds no power

• [Church] Lambda Calculus is equivalent to TM

• [Chomsky] Unrestricted replacement grammars are equivalent
to TM

• [Takahara and Yokomori] DNA is at least as powerful as a TM

• [Hotly Debated] Is the human brain equivalent to a TM?

“Some of these models are very much like Turing machines, but
others are quite different.” (not such a bogus sentence)

27Lecture 14: Church-Turing Thesis

Charge

• Next week: what languages cannot be

recognized by a TM?

• Read Chapter 4: Decidability

– I don’t think it has any extremely bogus

sentences, but if you find one send it to me…

