Lecture 17: Proving Undecidability

Proofs of Decidability

How can you prove a language is \textit{decidable}?

What Decidable Means

A language \(L \) is \textbf{decidable} if there exists a TM \(M \) such that for all strings \(w \):

- If \(w \in L \), \(M \) enters \(q_{\text{Accept}} \).
- If \(w \notin L \), \(M \) enters \(q_{\text{Reject}} \).

To prove a language is decidable, we can show how to construct a TM that decides it.

For a correct proof, need a convincing argument that the TM always eventually accepts or rejects any input.

Proofs of Undecidability

How can you prove a language is \textbf{undecidable}?

Proofs of Undecidability

To prove a language is \textbf{undecidable}, need to show there is no Turing Machine that can decide the language.

This is hard: requires reasoning about all possible TMs.

Proof by Reduction

1. We know \(X \) does not exist. (e.g., \(X \) is a TM that can decide \(A_{\text{TM}} \))

2. Assume \(Y \) exists. (e.g., \(Y \) is a TM that can decide \(B \))

3. Show how to use \(Y \) to make \(X \).

4. Since \(X \) does not exist, but \(Y \) could be used to make \(X \), then \(Y \) must not exist.
Lecture 17: Proving Undecidability

Reduction Proofs

A reduces to B means that can solve B can be used to make that can solve A.

Hence, A is not a harder problem than B.

The name “reduces” is confusing: it is in the opposite direction of the making.

Converse?

A reduces to B that can solve B can be used to make that can solve A

A is not a harder problem than B.

Does this mean B is as hard as A?

No! Y can be any solver for B. X is one solver for A.

There might be easier solvers for A.

Reduction Pitfalls

- Be careful: the direction matters a great deal
 – Showing a machine that decides B can be used to build a machine that decides A shows that A is not harder than B.
 – To show equivalence, need reductions in both directions.
- The transformation must involve only things you know you can do: otherwise the contradiction might be because something else doesn’t exist.

What does can do mean here?

What “Can Do” Means

- The transformations in a reduction proof are limited by what you are proving
- For undecidability proofs, you are proving something about all TMs: the reduction transformations are anything that a TM can do that is guaranteed to terminate
- For complexity proofs (later), you are proving something about how long it takes: the time it takes to do the transformation is limited

The Halting Problem

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM description and } M \text{ halts on input } w \} \]

Alternate statement as problem:
Input: A TM M and input w
Output: True if M halts on w, otherwise False.

Is \(\text{HALT}_{TM} \) Decidable?

- Possible “Yes” answer: Prove it is decidable
 - Design a TM that can decide \(\text{HALT}_{TM} \)
- Possible “No” answer: prove it is undecidable
 - Show that no TM can decide \(\text{HALT}_{TM} \)
 - Show that a TM that could decide \(\text{HALT}_{TM} \) could be used to decide \(A_{TM} \) which we already proved is undecidable.
Acceptance Language

\[A_{TM} = \{ <M, w> | M \text{ is a TM description and } M \text{ accepts input } w \} \]

We proved \(A_{TM} \) is undecidable last class.

Since we know \(A_{TM} \) is undecidable, we can show a new language \(B \) is undecidable if a machine that can decide \(B \) could be used to build a machine that can decide \(A_{TM} \).

Reducing \(A_{TM} \) to \(HALT_{TM} \)

\[HALT_{TM} = \{ <M, w> | M \text{ is a TM description and } M \text{ halts on input } w \} \]

\[A_{TM} = \{ <M, w> | M \text{ is a TM description and } M \text{ accepts input } w \} \]

\(<M, w> \) is in \(A_{TM} \) if and only if:
- \(M \) halts on input \(w \)
- and when \(M \) halts it is in accepting state.

Deciding \(A_{TM} \)

- Assume \(HALT_{TM} \) is decidable.
- Then some TM \(R \) can decide \(HALT_{TM} \).
- We can use \(R \) to build a machine that decides \(A_{TM} \):
 - Simulate \(R \) on \(<M, w> \)
 - If \(R \) rejects, it means \(M \) doesn’t halt: reject.
 - If \(R \) accepts, it means \(M \) halts:
 - Simulate \(M \) on \(w \), accept/reject based on \(M \)’s accept/reject.

Since any TM that decides \(HALT_{TM} \) could be used to build a TM that decides \(A_{TM} \) (which we know is impossible) this proves that no TM exists that can decide \(HALT_{TM} \).

Equivalence of DFA \(D \) and TM \(M \)

\[EQ_{DM} = \{ <D, T> | D \text{ is a DFA description, } T \text{ is a TM description and } L(T) = L(D) \} \]

Is \(EQ_{DM} \) decidable?

\(EQ_{DM} \) is Undecidable

- Suppose \(R \) decides \(EQ_{DM} \).
- Can we use \(R \) to decide \(HALT_{TM} \)?

\[HALT_{TM} = \{ <M, w> | M \text{ is a TM description and } M \text{ halts on input } w \} \]

\[EQ_{DM} = \{ <D, T> | D \text{ is a DFA description, } T \text{ is a TM description and } L(T) = L(D) \} \]

Given \(M \) and \(w \), how can you construct \(D \) and \(T \) so \(R(<D, T>) \) tells you if \(M \) halts on \(w \)?

\(EQ_{DM} \) is Undecidable

- Suppose \(R \) decides \(EQ_{DM} \).
- Can we use \(R \) to decide \(HALT_{TM} \)?

\[EQ_{DM} = \{ <D, T> | D \text{ is a DFA description, } T \text{ is a TM description and } L(T) = L(D) \} \]

\(D \) = DFA that accepts all strings.

\(T \) = TM that ignores input and simulates \(M \) on \(w \), and if simulated \(M \) accepts or rejects, accept.
EQ_DM is Undecidable

\[\text{HALT}_{TM} = \{ <M, w> \mid M \text{ is a TM description and } M \text{ halts on input } w \} \]

\[\text{EQ}_{DM} = \{ <D, T> \mid D \text{ is a DFA description, } T \text{ is a TM description and } L(T) = L(D) \} \]

\[D = \text{DFA that rejects all strings.} \]

\[T = \text{TM that ignores input and simulates } M \text{ on } w, \text{ and if simulated } M \text{ accepts or rejects, reject.} \]

Rice’s Theorem
Henry Gordon Rice, 1951

Any nontrivial property about the language of a Turing machine is undecidable.

Nontrivial means the property is true for some TMs, but not for all TMs.

Which of these are Undecidable?

- Does TM \(M \) accept any strings? \(\text{Undecidable} \)
- Does TM \(M \) accept all strings? \(\text{Undecidable} \)
- Does TM \(M \) accept “Hello”? \(\text{Undecidable} \)
- Does TM \(M_1 \) accept more strings than TM \(M_2 \)? \(\text{Undecidable} \)
- Does TM \(M \) take more than 1000 steps to process input \(w \)? \(\text{Decidable} \)
- Does TM \(M_1 \) take more steps than TM \(M_2 \) to process input \(w \)? \(\text{Undecidable} \)

Next Class

- Examples of some problems we actually care about that are undecidable
- Are there any problems that we don’t know if they are decidable or undecidable?
- PS5 Due next Tuesday (April 1)
- Exam 2 in two weeks