Lecture 19: Undecidability in Theory and Practice

PS5, Problem 5
Consider a one-tape Turing Machine that is identical to a regular Turing machine except the input may not be overwritten. That is, the symbol in any square that is non-blank in the initial configuration must never change. Otherwise, the machine may read and write to the rest of the tape with no constraints (beyond those that apply to a regular Turing Machine).

a. What is the set of languages that can be recognized by an unmodifiable-input TM?
b. Is HALT_{UTM} decidable?

Nevertheless, HALT_{UTM} is Undecidable
Prove by reducing HALT_{TM} to HALT_{UTM}:

$\text{HALT}_{\text{TM}}(<M, w>) = \text{HALT}_{\text{UTM}}(<\text{MU}w, \varepsilon>)$ where $\text{MU}w$ = an unmodifiable-TM that ignores the input, writes a # on the tape, followed by w, then, simulates M on the tape starting at the first square after the #, treating the # as if it is the left edge of the tape.

Impossibility of Copying

input (unmodifiable)

How can the TM keep track of which input square to copy next?

Option 1: Use the writable part of the tape.
Problem: can’t read it without losing head position
Option 2: Use the FSM states.
Problem: there is a finite number of them!

Hence, it is equivalent to a DFA \Rightarrow regular languages

Computability in Theory and Practice

(Intellectual Computability Discussion on TV Video)
Lecture 19: Undecidability in Theory and Practice

Ali G Problem

- **Input:** a list of numbers (mostly 9s)
- **Output:** the product of the numbers

$L_{\text{ALG}} = \{ <k_0, k_1, \ldots, k_n, p> | \text{each } k_i \text{ represents a number and } p \text{ represents a number that is the product of all the } k_i s.\}$

Is L_{ALG} decidable? Yes. It is easy to see a simple algorithm (e.g., elementary school multiplication) that solves it.

Can real computers solve it?

Ali G was Right!

- Theory assumes ideal computers:
 - Unlimited, perfect memory
 - Unlimited (finite) time
- Real computers have:
 - Limited memory, time, power outages, flaky programming languages, etc.
 - There are many decidable problems we cannot solve with real computer: the actual inputs do matter (in practice, but not in theory!)

The “Busy Beaver” Game

- Design a Turing Machine that:
 - Uses k symbols (e.g., “0” and “1”)
 - Starts with a tape of all “0”s
 - Eventually halts (can’t run forever)
 - Has n states (not counting q_{Accept} and q_{Reject})
- Goal is to run for as many steps as possible (before halting)
- 2-way infinite tape TM

Tibor Radó, 1962
Lecture 19: Undecidability in Theory and Practice

Busy Beaver: \(N = 1 \)

\(BB(1, 2) = 1 \)

Most steps a 1-state machine that halts can make

\[\text{Input: 0} \quad \text{Write: 1} \quad \text{Move: \rightarrow} \]

\[\text{Input: 1} \quad \text{Write: 1} \quad \text{Move: \rightarrow} \]

\[\text{Input: 1} \quad \text{Write: 1} \quad \text{Move: \rightarrow} \]

\[\text{Input: 1} \quad \text{Write: 1} \quad \text{Move: \rightarrow} \]

\[\text{Input: 1} \quad \text{Write: 1} \quad \text{Move: \rightarrow} \]

\[\text{Input: 1} \quad \text{Write: 1} \quad \text{Move: \rightarrow} \]

BB(2, 2) = ?

Step 2

Step 3

Step 4

Step 5
Lecture 19: Undecidability in Theory and Practice

A

Input: 0
Write: 1
Move: →

Input: 0
Write: 1
Move: ←

H

Start

BB(2, 2) ≥ 6

Halted

Input: 1
Write: 1
Move: /

Input: 1
Write: 1
Move: ←

Step 6

What is BB(6, 2)?

Busy Beaver Numbers

- BB(1) = 1
- BB(2) = 6
- BB(3) = 21
- BB(4) = 107
- BB(5) = Unknown!
- BB(6) > 10^{2879}

Best found before 2001, only 925 digits!

http://drb9.drb.insel.de/~heiner/BB/index.html

6-state machine found by Buntrock and Marxen, 2001

(1730 digits)

Best found before 2001, only 925 digits!
Is there a language problem?

\[L_{BB} = \{ \langle n, k, s \rangle \mid \text{where } n \text{ and } k \text{ represent integers and } s \text{ is the maximum number of steps a TM with } n \text{ non-final states and } k \text{ tape symbols can run before halting} \} \]

Is \(L_{BB} \) Decidable?

\[L_{BB} \text{ is Undecidable} \]

Proof by reduction:
Assume \(M_{BB} \) exists that decides \(L_{BB} \)

\[HALT_{TM}(\langle M, w \rangle) = \]

\[n = \text{number of states in } M \]
\[k = \text{number of symbols in } M's \text{ tape alphabet} \]

find \(s \) by trying \(s = 1, 2, ... \) until \(M_{BB} \) accepts \(\langle n, k, s \rangle \)

simulate \(M \) on \(w \) for up to \(s \) steps

if it halts, accept

if it doesn’t complete, reject

Challenges

- The standard Busy Beaver problem is defined for a doubly-infinite tape TM. For the one-way infinite tape TM, what is \(BB(4, 2) \)?
- Find a new record BB number

Exam 2: one week from today.