5 Y i
=
/‘ff -
ol
77
kp]
1 A Calculus &
. Computability
%
E_ Yan Huang
-:F‘g Dept. of Comp. Sci.
¥ University of Virginia
Lecture 20: A Calculus ﬁ Computer Science
Calculus

* What is calculus?

— Calculus is a branch of mathematics that
includes the study of limits, derivatives,
integrals, and infinite series.

« Examples
d(uv) = v(du) +u(dv) The product rule

dy dydu H
e The chain rule

Lecture 20: A Calculus 3 3 Computer Science|

A Calculus Formalism (Grammar)

« Keywords: A . () terminals

e term — variable
| (term)
| X variable . term

| term term

Humans can give meaning to those
symbols in a way that corresponds
to computations.

Review of the Turing Machine

» Formalism (Q,T,%,0, ¢start, Qaccepts dreject)
+ Abstract Problems

» Language Problems

» Computation

» Computability vs. Decidability

Today we are looking at a completely different
formal computation model — the A-Calculus!

2 i Computer Science

Lecture 20: A Calculus

Real Definition

» Calculus is just a bunch of rules for
manipulating symbols.

» People can give meaning to those
symbols, but that’s not part of the calculus.

« Differential calculus is a bunch of rules for
manipulating symbols. There is an
interpretation of those symbols
corresponds with physics, geometry, etc.

s Computer Science
4 i Comp:

Lecture 20: A Calculus 5 iy Computer Science

Lecture 20: A Calculus

A Calculus Formalism (rules)

* Rules
o-reduction (renaming)
Aye M =, v (M [y - v])
where v does not occur in M.

B-reduction (substitution)
(. M)N = g M [x = N]

Replace all Xs in M
with N

6 i Computer Science

Try Example 1, 2, &
3 on the notes now!

Lecture 20: A Calculus

Free and Bound variables

+ In X Calculus all variables are local to function
definitions
+ Examples
— Ax.xy
x is bound, while y is free;
= (Axx)(hy.yx)
x is bound in the first function, but free in the second function
= Ax.(Ay.yx)
x and y are both bound variables. (it can be abbreviated as
Axy.yx)

Lecture 20: A Calculus 7

Be careful about B-Reduction

* M. M)N=>M[x~N]

Try Example 4 on Replace all x's in M
the notes now! with N

If the substitution would bring a free variable
of N in an expression where this variable
occurs bound, we rename the bound variable
before the substitution.

5]
[e]
&
o

Lecture 20: A Calculus 8

Computing Model for A Calculus

« redex: a term of the form (Ax. M\)N
Something that can be B-reduced

» An expression is in normal form if it
contains no redexes (redices).

» To evaluate a lambda expression, keep
doing reductions until you get to normal
form.

B-Reduction represents all the computation

capability of Lambda calculus.

Lecture 20: A Calculus 9) Computer Science|

Another exercise

A fo (A fx) (A x. f (xx))) (Az.2)

Lecture 20: A Calculus 10 fi Computer Science

Possible Answer

A f (A x.f (xx)) (A x. f(xx)))) (Az.2)
—p (Ax.(Az.2)(xx)) (A x. (Az.2)(xx))
—p Az.2) A x.(Az.2)(xx)) A x.(Az.2)(xx))
—p (Ax.(Az.2)(xx)) (A x.(Az.2)(xx))
—p Az.2) A x.(Az.2)(x)) A x.(Az.2)(xx))
—p (Ax.(Az.2)(xx)) (A x.(Az.2)(xx))

—)B -

Lecture 20: A Calculus 11

Alternate Answer

AL (A xf (ex) (A x. f (xx)))) (Az.2)
—p (Ax.(Az.2)(xx)) (A x. (Az.2)(xx))
—p (Ax.xx) (Ax.(Az.2)(xx))
—p (Ax.xx) (Ax.xx)
—p (Ax.xx) (Ax.xx)
—p -

Lecture 20: A Calculus 12

Be Very Afraid!

+ Some A-calculus terms can be B-reduced
forever!

» The order in which you choose to do the
reductions might change the result!

Lecture 20: A Calculus 13

5 Compurer Science

Alonzo Church (1903~1995)

Lambda Calculus
Church-Turing thesis

If an algorithm (a procedure that
terminates) exists then there is an
equivalent Turing Machine or
applicable J-function for that
algorithm.

Lecture 20: A Calculus 15

s Computer Science
i Comp

Equivalence in Computability

e A Calculus < Turing Machine

— (1) Everything computable by A Calculus can
be computed using the Turing Machine.

— (2) Everything computable by the Turing
Machine can be computed with X Calculus.

Lecture 20: A Calculus 17

5 Compurer Science

Take on Faith

« All ways of choosing reductions that reduce
a lambda expression to normal form will
produce the same normal form (but some
might never produce a normal form).

« If we always apply the outermost lambda
first, we will find the normal form if there is
one.

—This is normal order reduction — corresponds to
normal order (lazy) evaluation

Lecture 20: A Calculus 14 iy Computer Science

Alan M. Turing (1912~1954)

+ Turing Machine
* Turing Test
* Head of Hut 8

Advisor:
Alonzo Church

Lecture 20: A Calculus 16 fi Computer Sci

Simulate A Calculus with TM

+ The initial tape is filled with the initial &
expression

« Finite number of reduction rules can be
implemented by the finite state automata
in the Turing Machine

« Start the Turing Machine; it either stops —
ending with the A expression on tape in
normal form, or continues forever — the [3-
reductions never ends.

Lecture 20: A Calculus 18 iy Computer Science

WPI hacker implemented it on Z8
microcontroller

()N (. (52))))
]

(2 (s
0

On Zilog
Z8 Encore

Lecture 20: A Calculus 19 i Computer Science]

Equivalence in Computability

e A Calculus <« Turing Machine

— (1) Everything computable by A Calculus can
be computed using the Turing Machine.

— (2) Everything computable by the Turing
Machine can be computed with A Calculus.

Lecture 20: A Calculus 21

Computer Science|

Making Decisions

+ What does decision mean?
— Choosing different strategies depending on
the predicate
ifTMN—>M
ifFMN—> N
* What does True mean?

—True is something that when used as the first
operand of if, makes the value of the if the
value of its second operand:

Lecture 20: A Calculus 23 i Computer Science]

A Calculus in a Can

* Project LambdaCan

Refer to

http://alum.wpi.edu/~tfraser/Software/Arduino

/lambdacan.html for instructions to build your
own A-can!

Lecture 20: A Calculus 20 i Computer Science]

Simulate TM with A Calculus

+ Simulating the Universal Turing Machine

Lzlzfz]z]z]z[z] 2]z 2] 2] 2] z[2] 2] 2]z [z |

Read/Write Infinite Tape
g &S Mutable Lists
. =] Finite State Machine
Numbers
e pa h
Finite State Machine Processmg
Way to make decisions (if)
Way to keep going
Lecture 20: A Calculus 22 Computer Science|
Finding the Truth
if =Apca . pca
T =Axy. x
F=Xxy.y
ifTMN

((Apca . pca) (Axy. x)) M N
—g (hea . (Axy. x) ca)) M N
—p—p Ay. x) M N
—5 (0. M) N =5 M

Try out reducing
(if FTF) on your
notes now!

Lecture 20: A Calculus 24 {5 Computer Science|

and and or?

e and =

(lf Xy) |much more human-readable!

Axy.
—g Axy.((Apca.pca) x y F)
—pAxy.(xy F)

—p Axy.(xy (Auv.v))

cor=)\xy.(ifxTy)

Lecture 20: A Calculus 25 ﬁ Computer Science
What is 11?
eleven elf o
undici
11 +—
once XI
OAMHHAAUATSL
onze

1LITY

Lecture 20: A Calculus 27) Computer Science|

Simulate TM with A Calculus

 Simulating the Universal Turing Machine

Lzlzlz]z]z]z]z[z[z[z]z]z]z] 2] 2] 2]z |2]|

Read/Write Infinite Tape
.. Mutable Lists
Finite State Machine

m
Numbers
Eof e
= = Processing

Finite State Machine .. .
v Way to make decisions (if)
Way to keep going

Lecture 20: A Calculus 26 iy Computer Science

Defining Numbers

* In Church numerals, nis represented as a
function that maps any function fto its n-
fold composition.

c0=Afx.x
c1=hfr f(x)
* 220 fx f(F ()

Lecture 20: A Calculus 29 iy Computer Science

Numbers

» The natural numbers had their origins in
the words used to count things

* Numbers as abstractions

Lecture 20: A Calculus 28) Computer Science|

Defining succ and pred

e succ=Anfx.f(nfx)
s pred = Anfx n(Agh h(gf) (Au. x) (Au. u)

0 ifn =0,

n—1 otherwise

pred(n) = {

. ?
suce 14 ? el see later how to deduce

the term for pred using
knowledge about pairs.

Lecture 20: A Calculus 30 iy Computer Science

Simulate TM with A Calculus

 Simulating the Universal Turing Machine

Lzlzlz]z]z]z]z[z[z[z]z]z]z] 2] 2] 2]z |2]|

= 1= Read/Write Infinite Tape
g &S Mutable Lists
- =] Finite State Machine
D Ve I_lumbers
Finite State Machine Processmg .. .
v Way to make decisions (if)
Way to keep going
Lecture 20: A Calculus 31 ﬁ Computer Science

Defining List
* Listis either

— (1) null; or
—(2) a pair whose second element is a list.

How to define null and pair then?

null, null?, pair, first, rest

null? null - T
null? (pair MN) - F

first (pair MN) > M
rest (pair MN) -> N

Lecture 20: A Calculus 32 iy Computer Science

Lecture 20: A Calculus 33) Computer Science|

Defining Pair

* A pair [a, b] = (pair a b) is represented as

Az.zab
o first=ppT
crest=\ppF

s pair=Axyz.zxy

« first (cons M N)

—p(Ap.p T) (pair M N)

—g(Pair MN) T -5 (Az.zMN) T
—g TMN

—>gM

null and null?

e null =Ax.T
* null? = Ax.(x Ayz.F)

* null? null - (Ax.(x Ayz.F)) (Ax. T)
—g (Ax. T)(Ayz.F)
- T

Lecture 20: A Calculus 34) Computer Science|

Lecture 20: A Calculus 35 iy Computer Science

Defining pred

+ C = \pz(z (succ (first p)) (firstp))
Obviously, C [n, n-1] —;[n+1, n], i.e.,, C
turns a pair [n, n-1] to be [n+1, n].

* pred = rest (\n. n C (Az.z 0 0))

Lecture 20: A Calculus 36 iy Computer Science

Simulate TM with A Calculus

 Simulating the Universal Turing Machine

Lzlzlz]z]z]z]z[z[z[z]z]z]z] 2] 2] 2]z |2]|

= 1= Read/Write Infinite Tape
g & v Mutable Lists
- =] Finite State Machine
e Ve I_lumbers
Finite State Machine Processmg
v/ Way to make decisions (if)

Way to keep going

Lecture 20: A Calculus 37 iy Computer Science

Simulate Recursion

A fo (O xof (xx) (A x. f (xx)))) (Az.2)
—p (Ax.(Az.2)(xx)) (A x. (Az.2)(xx))
—p (Az.2) (A x.(Az.2)(xx)) (A x.(Az.2)(xx))
—p (Ax.(Az.2)(xx)) (A x.(Az.2)(xx))
—p (Az.2) (A x.(Az.2)(xx)) (A x.(Az.2)(xx))
—p (Ax.(Az.2)(xx)) (A x.(Az.2)(xx))
—)[3 This should give you some belief that we

might be able to do it. We won't cover
the details of why this works in this class.

Lecture 20: A Calculus 38 iy Computer Science

Simulate TM with A Calculus

+ Simulating the Universal Turing Machine

[zlz]z]z]z]z]z]2z]z][z]2z] 2] 2] 2] z] 2]z [z |

= e Read/Write Infinite Tape
S 9 v’ Mutable Lists
B =] Finite State Machine
v Numbers
oo o CO gl | ;
Finite State Machine Processmg
v" Way to make decisions (if)

v' Way to keep going

Lecture 20: A Calculus 39) Computer Science|

@) Introducing Scheme

» Scheme is a dialect of LISP programming
language

» Computation in Scheme is a little higher level
than in A-Calculus in the sense that the more
“human-readable” primitives (like T, F, if,
natural numbers, null, null?, and cons, etc)
have already been defined for you.

» The basic reduction rules are exactly the same.

Lecture 20: A Calculus 40) Computer Science|

A Turing simulator in Scheme

bol)

Lecture 20: A Calculus 41 iy Computer Science

TM Simulator demonstration

jdefine teat-states

YOO WE#) (2 V# right))
(0a) (1 \# rightl)
(12 VH#) (5 V# right))
i1 =) i1 a right))
({1 1) (1 b right])
({1 V#) (2 \# lefr))
({2 B (3 \# left))
({3 a) (3 a left))
({3 b} (3 b left))
(03 \#) (0 N# right]i))

A Turing Machine recognizing a™b" Encoding of the FSM in Scheme.

Lecture 20: A Calculus 42 iy Computer Science

Summary: TM and A Calculus

» A Calculus emphasizes the use of
transformation rules and does not care
about the actual machine implementing
them.

+ It is an approach more related to software
than to hardware

Many slides and examples are adapted
from materials developed for Univ. of
Virginia CS150 by David Evans.

Lecture 20: A Calculus 43

{5 Computer Science
0T

