Final Exam

- **Scheduled by registrar:**
 - Saturday, May 3, 9am-noon (exam is scheduled for 3 hours, but will be designed to take ≤ 1.5 hours)
- **No notes or books allowed**
 - My sense from grading Exam 2 is people used their notes as a crutch, not helpfully
 - Enables “easier” questions and more partial credit
- **In class next Tuesday, I will hand out a “preview” of some of the exam questions and possibly discuss them**

Final Exam Topics

- **Everything** covered through this Thursday:
 - Exams 1 and 2 and comments
 - Problem Sets 1-6 and comments
 - Lectures 1-25
 - Sipser, Chapters 0-5, 7
 - Additional Readings: Aaronson (spring break), one of the NP-completeness papers
- **Roughly ⅓ Exam 1 material, ⅓ Exam 2 material, ⅓ since Exam 2 (but many individual questions will combine material from multiple parts)**

Theological Question

If God exists (and is omnipotent), can she compute anything regular people cannot compute?

- **Yes:** $P \subseteq NP$
 - Being able to always guess right when given a decision makes you more powerful than having to try both.
- **No:** $P = NP$
 - Being able to always guess right when given a decision does not make you more powerful than having to try both.

NP-Complete

A language B is in NP-complete if:

1. $B \in \text{NP}$
2. There is a polynomial-time reduction from every problem $A \in \text{NP}$ to B.

Is NP-Complete a Ring or a Circle?
Lecture 24: P=NP?

NP-Complete

A language \(B \) is in NP-complete if:
1. \(B \in \text{NP} \)
2. There is a polynomial-time reduction from every problem \(A \in \text{NP} \) to \(B \).

NP-Hardness Recap

- If \(P = \text{NP} \):
 - To show a problem is NP-Hard: show for some input it outputs “true”, and for some input it outputs “false”
- If \(P \subset \text{NP} \):
 - To show a problem is NP-Hard: show that there is a polynomial-time reduction from some known NP-Complete problem to it
 - Showing a problem is NP-Hard means there is no polynomial time solution for it
Games and NP-Hardness

Papers from Last Class
- (Generalized) Cracker Barrel Puzzle is NP-Complete
- (Generalized) March Madness is NP-Hard
 - Is it NP-Complete also?
- (Generalized) Minesweeper Consistency is NP-Complete
 - …?
 - Are these special cases, or is there something about “interesting” games that makes them NP-Hard?

What makes a “game” a game?

Recall: Class NP
A language is in NP if and only if it is decided by some nondeterministic polynomial time Turing Machine
A language is in NP if and only if it has a corresponding polynomial time verifier
That is, there is a certificate that can prove a string is in the language which can be checked in polynomial time.

All “Interesting” Games?

Game Certificate
- Given a path through a game, can you check if it is a valid winning path in polynomial time?

\[
\text{def verify(Path } p)\text{):}
\text{ return isInitial(p[0])}
\text{ && isWinningState(p[-1])}
\text{ && allMovesValid(p)}
\]
\[
\text{def allMovesValid(Path } p)\text{):}
\text{ if } (p.length <= 1) \text{ return true; return isValidMove(p[0], p[1])}
\text{ && allMovesValid(p[1:])}
\]
(One-Player) Games in NP

How could a game be outside NP?

• The maximum number of moves is polynomial in the size of the game e.g., Hex, Sokoban
• There is a polynomial-time procedure for checking a move (state, state pair) is valid
• There is a polynomial-time procedure for checking a position is a winner

Games in P

• The number of possible moves or the number of moves you need to lookahead to pick the right move, does not scale with the size of the game

There is a polynomial-time function from the game state to the correct move: don’t need to consider deep paths to select the right move

NP-Complete One-Player Games

• In NP: polynomial-time certificate
• Polynomial-time reduction from 3SAT (or any other NPC problem) to the game

Essentially: no way to know if a move is correct without looking ahead all the way to the end.

All "fun" one-player games are NP-Complete:
Games inside P are too easy (once you solve them always win)
Games outside NP are too hard

But...we actually play finite versions of these games (in TIME(1))

Reduction Proofs

• Conjecture: A has some property Y.
• Proof by reduction from B to A:
 – Assume A has Y. Then, we know there is an M that decides A.
 – We already know B does not have property Y.
 – Show how to build S that solves B using M.
• Since we know B does not have Y, but having S would imply B has Y, S cannot exist. Therefore, M cannot exist, and A does not have Y.

Undecidability Proofs

• Conjecture: A has some property Y.
• Proof by reduction from B to A:
 – Assume A has Y. Then, we know an M exists.
 – We already know B does not have property Y.
 – Show how to build S that solves B using M.
• Since we know B does not have Y, but having S would imply B has Y, S cannot exist. Therefore, M cannot exist, and A does not have Y.

Undecidability:
Y = “can be decided by a TM”
B = a known undecidable problem (e.g., \text{A}^{TM}, \text{HALT}^{TM}, \text{EQ}^{TM}, ...)
M = “a TM that decides A”
NP-Hardness Proofs

- Conjecture: A has some property Y.
- Proof by reduction from B to A:
 - Assume A has Y. Then, we know an M exists.
 - We already know B does not have property Y.
 - Show how to build S that solves B using M.
- Since we know B does not have Y, but having S would imply B has Y, S cannot exist. Therefore, M cannot exist, and A does not have Y.

NP-Hardness:
Y = "is NP-Hard"
B = a known NP-Hard problem (e.g., 3-SAT, SUBSET-SUM, …)
M = "a TM that decides A in polynomial-time"

The Hard Part

- Conjecture: A has some property Y.
- Proof by reduction from B to A:
 - Assume A has Y. Then, we know an M exists.
 - We already know B does not have property Y.
 - Show how to build S that solves B using M.
- Since we know B does not have Y, but having S would imply B has Y, S cannot exist. Therefore, M cannot exist, and A does not have Y.

Example

- Suppose we know A is undecidable, but do not yet know if EQTM is.

EQTM = \{ <M, w> | M is TM, w is string, w in L(M) \}
A = \{ <M, w> | M is TM, w is string, w in L(M) \}

Conjecture: EQTM is undecidable.

Pitfall #1: Make sure you do reduction in right direction.
Showing how to solve B using M, shows A is as hard as B.

Pitfall #2: Get the inputs to the solver to match correctly.
To solve B using M, must transform inputs to B into inputs to A.

Legal Transformations

- Undecidability proofs: your transformation can do anything a TM can do, but must be guaranteed to terminate
 - E.g., cannot include, “simulate M and if it halts, accept”
- NP-Hardness proofs: your transformation must finish in polynomial time
 - E.g., cannot include, “do an exponential search to find the answer, and output that”

Example: KNAPSACK Problems

- You have a collection of items, each has a value and weight
- How to optimally fill a knapsack with as many items as you can carry
 - Scheduling: weight = time, one deadline for all tasks
 - Budget allocation: weight = cost
General KNAPSACK Problem

- **Input**: a set of \(n \) items

 \(\{<\text{name}_0, \text{value}_0, \text{weight}_0>, \ldots, <\text{name}_{n-1}, \text{value}_{n-1}, \text{weight}_{n-1}>\} \)

 and \(\text{maxweight} \)

- **Output**: a subset of the input items such that the sum of the weights of all items in the output set is \(\leq \text{maxweight} \) and there is no subset with weight sum \(\leq \text{maxweight} \) with a greater value sum.

Note: it is not a decision problem. Can we make it one?

```python
def knapsack(items, maxweight):
    best = {}
    bestvalue = 0
    for s in allPossibleSubsets(items):
        value = 0
        weight = 0
        for item in s:
            value += item.value
            weight += item.weight
        if weight <= maxweight:
            if value > bestvalue:
                best = s
                bestvalue = value
    return best
```

2\(^n\) subsets \(\Theta(n) \) for each one

Running time \(\in \Theta(n2^n) \)

Does this prove it is not in \(P \)?

No!

To prove it is not in \(P \), we would need to show the **best** possible algorithm that solves it is not polynomial time.

Is KNAPSACK NP-Complete?

NP-Complete

A language \(B \) is in NP-complete if:

1. \(B \in \text{NP} \)

2. There is a polynomial-time reduction from every problem \(A \in \text{NP} \) to \(B \).

KNAPSACK in NP

- Certificate: subset of items
- Test in \(P \): add up the weights of those items, check it is less than \(\text{maxweight} \)

For the non-decision problem: ask for certificates for all values 1, 2, ..., \(\text{maxweight} \).
KNAPSACK in NP-Complete

- Reduction from **SUBSET-SUM** to **KNAPSACK**:

 \[\text{SUBSET-SUM} = \{ <S, t> \mid S = \{x_1, \ldots, x_k\} \text{ and for some } \{y_1, \ldots, y_l\} \subseteq S, \sum y_i = t \} \]

 Transform input to match **KNAPSACK**:
 - **Input**: a set of \(n \) items
 \[
 \{<\text{name}_0, \text{value}_0, \text{weight}_0>, \ldots, <\text{name}_{n-1}, \text{value}_{n-1}, \text{weight}_{n-1}>\}
 \]
 and \(\text{maxweight} \)

Input Transformation

- **SUBSET-SUM** \((<S, t>)\): \(S = \{x_1, \ldots, x_k\} \)
 - do something using
 - **KNAPSACK** \((<\{<x_1", x_1>, \ldots, <x_k", x_k>\}, t>\))

 KNAPSACK Input: a set of \(n \) items
 \[
 \{<\text{name}_0, \text{value}_0, \text{weight}_0>, \ldots, <\text{name}_{n-1}, \text{value}_{n-1}, \text{weight}_{n-1}>\}, \text{maxweight}\}
 \]

- **Output Transformation**

 \[\text{SUBSET-SUM} (<<S, \ldots, s_k>) >: \ S = \{x_1, \ldots, x_k\} \]
 - accept iff\n \[t = \Sigma (\text{KNAPSACK} (\{<\{<x_1", x_1>, \ldots, <x_k", x_k>\}, t>\})) \]

 KNAPSACK Output: a subset of the input items such that the sum of the weights of all items in the output set is \(\leq \text{maxweight} \)
 and there is no subset with weight sum \(\leq \text{maxweight} \) with a greater value sum

“Solving” NP-Hard Problems

- What do we do when solving an important problem requires solving an NP-Complete problem?
 - a. Give up.
 - b. Hope P = NP.
 - c. Solve a different problem.
 - d. Settle for an “incorrect” answer.

Approximation Algorithms

Sometimes it is better to produce an incorrect answer quickly, than wait (longer than the lifetime of the universe) for a correct answer.

A good approximation algorithm:
1. Runs in Polynomial Time
2. Produces answer within some known bound of best answer

Greedy Algorithms

- Make locally optimal decisions
- For NP-Hard problems: cannot guarantee you find the best answer this way
Greedy Knapsack Algorithm

```python
def knapsack_greedy(items, maxweight):
    result = []
    weight = 0
    while True:
        # try to add the best item
        weightleft = maxweight - weight
        bestitem = None
        for item in items:
            if item.weight <= weightleft
                and (bestitem == None
                    or item.value > bestitem.value):
                bestitem = item
        if bestitem == None:
            break
        else:
            result.append(bestitem)
            weight += bestitem.weight
    return result
```

Running Time
\[\Theta(n^2)\]

Is Greedy Algorithm Correct?

No.
Proof by counterexample:
Consider input
- \(\text{items} = \{\text{"gold", 100, 1},\text{"platinum", 110, 3}\
\text{"silver", 80, 2}\}\)
- \(\text{maxweight} = 3\)
Greedy algorithm picks \{"platinum"\}
value = 110, but \{"gold", "silver"\}
has weight <= 3 and value = 180

The Moral

Life is (NP-) Hard, but probably not (NP-)Complete...

Thursday: Karsten Nohl will talk about interesting theory problems in breaking cryptosystems