
cs302 Theory of Computation UVa Spring 2008

Notes: Pushdown Automata
Tuesday, 5 February

Upcoming Schedule

Wednesday, 6 February (9:30-10:30am): Theory Coffee Hours (Wilsdorf Coffee Shop, I
may be at one of the tables upstairs)

Wednesday, 6 February (6-7pm): Problem-Solving Session (Olsson 226D)
Thursday, 7 February: Problem Set 2 is due at the beginning of class.

Proving Non-Regularity

Pumping Lemma. If A is a regular language, then there is a number p (the pumping length) where
for any string s ∈ A and |s| ≥ p, s may be divided into three pieces, s = xyz, such that |y| > 0,
|xy| ≤ p, and for any i ≥ 0, xyiz ∈ A.

To use the pumping lemma to prove a language A is non-regular, assume A is regular and find a
contradiction using the pumping lemma. Since the pumping lemma says that the property holds
for any string s ∈ A, if we can find one string w ∈ A for which the property does not hold (that is,
we need to show there is no way to divide w into xyz with the necessary properties) then we have
our contradiction.

Example 1. Prove the language
{

0i1j |i ≤ j
}

is not regular.

Proof by Contradiction.
Assume

{
0i1j |i ≤ j

}
is regular and p is the pumping length forA. Then, we will identify

a string that cannot be pumped.

Choose w = 0p1p. w ∈ A since we can choose i = j = p.
The pumping lemma says that w = xyz for some x, y, and z such that xyiz ∈ A for all

i ≥ 0, and |xy| ≤ p.
Since the first p symbols in w are 0s, no matter how we choose x, y, and z, we know
|xy| ≤ p, so y must be withing the first p symbols of w, hence it can only contain 0s.

But, since y only includes 0s, pumping y increases the number of 0s, without changing
the number of 1s. To be in the language, though, the number of 0s (i) must be ≥ the
number of 1s (j).

Thus, we have a contradiction. This proves that the language is not regular.

Example 2. Prove the language {ww|w ∈ Σ∗} is not regular.

Example 3. Prove the language
{
w|w ∈ {0, 1}∗ and the number of 0s in w exceeds the number of 1s

}
is not regular.

PDA-1

Pushdown Automata

A pushdown automata is a finite automaton with a stack. A stack is a data structure that can contain
any number of elements, but for which only the top element may be accessed. We can represent a
stack as a sequence of elements, [s0, s1, . . . , sn]. We use Γ (Gamma) to represent the stack alphabet.
Γ is a finite set of symbols. So, a stack is represented by Γ∗.

There are two operations on a stack:

push: Γ∗ × Γε → Γ∗. push is defined by:

push(s, ε) = s
for v ∈ Γ, s = [s0, . . . , sn] , (s, v) = [v, s0, s1, . . . , sn]

pop: Γ∗ → Γ∗ × Γε. pop is defined by:

pop([]) = ([] , ε)
pop([s0, . . . , sn]) = (s0, [s1, . . . , sn])

A deterministic pushdown automaton1 (DPDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F) where Q, Σ, q0, and F are
defined as they are for a deterministic finite automaton, Γ is a finite state (the stack alphabet), and

δ: Q× Σ× Γε → Q× Γε

We can use any symbols we want in the stack alphabet, Γ. As with state labels, in designing a
DPDA, it is important to give symbols names that have meaning. Typically, we use $ as a special
symbol, often meaning the bottom of the stack.

We use label arrows in a DPDA as Σ,Γε → Γε. For a ∈ Σ, b, c ∈ Γ:

• a, b→ cmeans if the current input is a and the top-of-stack is b, follow this transition and pop
the b off the stack, and push the c.

• a, ε → c means if the current input is a, follow this transition and push c on the stack. (It
doesn’t matter what is on the stack.)

• a, b→ ε means if the current input is a and the top-of-stack is b, follow this transition and pop
the b off the stack.

• a, ε→ ε means if the current input is a, follow this transition (and don’t modify the stack).

Here is an example DPDA - what language does it recognize?

Prove that a DPDA is more powerful than a DFA.

1Note that the book (Definition 2.1) defines a nondeterministic pushdown automaton, but does not define a deterministic
pushdown automaton.

PDA-2

