Proving Non-Regularity

Pumping Lemma. If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where for any string \(s \in A \) and \(|s| \geq p \), \(s \) may be divided into three pieces, \(s = xyz \), such that \(|y| > 0 \), \(|xy| \leq p \), and for any \(i \geq 0 \), \(xy^iz \in A \).

To use the pumping lemma to prove a language \(A \) is non-regular, assume \(A \) is regular and find a contradiction using the pumping lemma. Since the pumping lemma says that the property holds for \(any \) string \(s \in A \), if we can find \(one \) string \(w \in A \) for which the property does not hold (that is, we need to show there is \(no \ way \) to divide \(w \) into \(xyz \) with the necessary properties) then we have our contradiction.

Example 1. Prove the language \(\{0^i1^j | i \leq j \} \) is not regular.

Proof by Contradiction.

Assume \(\{0^i1^j | i \leq j \} \) is regular and \(p \) is the pumping length for \(A \). Then, we will identify a string that cannot be pumped.

Choose \(w = 0^p1^p \). \(w \in A \) since we can choose \(i = j = p \).

The pumping lemma says that \(w = xyz \) for some \(x, y, \) and \(z \) such that \(xy^iz \in A \) for all \(i \geq 0 \), and \(|xy| \leq p \).

Since the first \(p \) symbols in \(w \) are 0s, no matter how we choose \(x, y, \) and \(z \), we know \(|xy| \leq p \), so \(y \) must be within the first \(p \) symbols of \(w \), hence it can only contain 0s.

But, since \(y \) only includes 0s, pumping \(y \) increases the number of 0s, without changing the number of 1s. To be in the language, though, the number of 0s \((i) \) must be \(\geq \) the number of 1s \((j) \).

Thus, we have a contradiction. This proves that the language is not regular.

Example 2. Prove the language \(\{ww | w \in \Sigma^* \} \) is not regular.

Example 3. Prove the language \(\{w | w \in \{0, 1\}^* \text{ and the number of 0s in } w \text{ exceeds the number of 1s} \} \) is not regular.
Pushdown Automata

A pushdown automata is a finite automaton with a stack. A stack is a data structure that can contain any number of elements, but for which only the top element may be accessed. We can represent a stack as a sequence of elements, \([s_0, s_1, \ldots, s_n]\). We use \(\Gamma\) (Gamma) to represent the stack alphabet. \(\Gamma\) is a finite set of symbols. So, a stack is represented by \(\Gamma^*\).

There are two operations on a stack:

- **push**: \(\Gamma^* \times \Gamma_e \rightarrow \Gamma^*\). push is defined by:
 \[
push(s, e) = s \text{ for } v \in \Gamma, \quad s = [s_0, \ldots, s_n], \quad (s, v) = [v, s_0, s_1, \ldots, s_n]\]

- **pop**: \(\Gamma^* \rightarrow \Gamma^* \times \Gamma_e\). pop is defined by:
 \[
pop(\epsilon) = ([], \epsilon) \text{ and } \quad pop([s_0, \ldots, s_n]) = (s_0, [s_1, \ldots, s_n])\]

A deterministic pushdown automaton\(^1\) (DPDA) is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F)\) where \(Q, \Sigma, q_0,\) and \(F\) are defined as they are for a deterministic finite automaton, \(\Gamma\) is a finite state (the stack alphabet), and \(\delta\) is defined as:

\[
\delta: Q \times \Sigma \times \Gamma_e \rightarrow Q \times \Gamma_e
\]

We can use any symbols we want in the stack alphabet, \(\Gamma\). As with state labels, in designing a DPDA, it is important to give symbols names that have meaning. Typically, we use \$ as a special symbol, often meaning the bottom of the stack.

We use label arrows in a DPDA as \(\Sigma, \Gamma_e \rightarrow \Gamma_e\). For \(a \in \Sigma, b, c \in \Gamma\):

- \(a, b \rightarrow c\) means if the current input is \(a\) and the top-of-stack is \(b\), follow this transition and pop the \(b\) off the stack, and push the \(c\).
- \(a, \epsilon \rightarrow c\) means if the current input is \(a\), follow this transition and push \(c\) on the stack. (It doesn’t matter what is on the stack.)
- \(a, b \rightarrow \epsilon\) means if the current input is \(a\) and the top-of-stack is \(b\), follow this transition and pop the \(b\) off the stack.
- \(a, \epsilon \rightarrow \epsilon\) means if the current input is \(a\), follow this transition (and don’t modify the stack).

Here is an example DPDA - what language does it recognize?

\(^1\)Note that the book (Definition 2.1) defines a nondeterministic pushdown automaton, but does not define a deterministic pushdown automaton.