
University of Virginia - cs3102: Theory of Computation Spring 2010

Pushdown Automata 9 February

A pushdown automata is a finite automaton with a stack. A stack can contain any number
of elements, but only the top element may be accessed.

We represent a stack as a sequence of elements, s0s1 . . . sn where s0 is the top of the stack.
We use Γ (Gamma) to represent the stack alphabet. Γ is a finite set of symbols. So, a stack
is an element of Γ∗.

A deterministic pushdown automaton (DPDA) is a 6-tuple (Q, Σ, Γ, δ, q0, F) where Q, Σ, q0,
and F are defined as they are for a deterministic finite automaton, Γ is a finite state (the
stack alphabet), and transition function:

δ : Q× Σε × Γε → (Q× Γε) ∪ {∅}

Note: Sipser defines a nondeterministic pushdown automaton (Definition 2.1) and uses
pushdown automata to mean “deterministic pushdown automata”, but does not define
a deterministic pushdown automaton.

Since the DPDA is deterministic, the δ function must not have only one possible choice
at all steps. What rules ensure this?

We can use any symbols we want in the stack alphabet, Γ. As with state labels, in design-
ing a DPDA, it is important to give symbols names that have meaning. Typically, we use
$ as a special symbol, often meaning the bottom of the stack.

We use label arrows in a DPDA as Σ, Γε → Γε. For a ∈ Σ, ht, hp ∈ Γ:

• a, ht → hp means if the current input is a and the top-of-stack is ht, follow this
transition and pop the ht off the stack, and push the hp.
• a, ε → hp means if the current input is a, follow this transition and push hp on the

stack. (It doesn’t matter what is on top of the stack.)
• a, ht → ε means if the current input is a and the top-of-stack is ht, follow this tran-

sition and pop the ht off the stack.
• a, ε → ε means if the current input is a, follow this transition and don’t modify the

stack.

Prove that a DPDA is more powerful than a DFA.

PDA-1



Describe a DPDA that can recognize the language {w|w contains more as than bs}.

Model of Computation for Deterministic Pushdown Automata

To define the model of computation for a DPDA, we define the extended transition func-
tion, δ∗, similarly to how we did for DFAs, except we need to model the stack.

∀q ∈ Q, ∀a ∈ Σ, x ∈ Σ∗, γ ∈ Γ∗, h ∈ Γ:

δ∗(q, ε, γ) = E(q, γ)

δ(q, a, ht)→ (qt, hp)⇒ δ∗(q, ax, htγ) = δ∗(qr, x, γr) where (qr, γr) = E(qt, hpγ)

E : Q× Γ∗ → Q× Γ∗ is the forced-follow ε-transitions function defined by:

δ(q, ε, γ) = ∅ : E(q, γ) = (q, γ)
δ(q, ε, htγ) = (qt, hpγ) : E(q, htγ) = E(qt, hpγ)

Accepting State Model: A deterministic pushdown automata, A = (Q, Σ, Γ, δ, q0, F) ac-
cepts a string w ∈ Σ∗ if and only if: δ ∗ (q0, w, ε)→ (q f , s) ∧ q f ∈ F.

Empty Stack Model: A deterministic pushdown automata, A = (Q, Σ, Γ, δ, q0) (note there
is no F now) accepts a string w ∈ Σ∗ if and only if: δ ∗ (q0, w, ε)→ (q, s) ∧ s = ε.

Nondeterministic Pushdown Automaton

A nondeterministic pushdown automaton (this is what Sipser calls a pushdown automa-
ton) is a 6-tuple (Q, Σ, Γ, δ, q0, F) where Q, Σ, Γ, q0, F are defined as they are for DPDA and
the transition function is defined:

δ : Q× Σε × Γε → P(Q× Γε)

Example. Define a NPDA that recognizes the language
{

wwR|w ∈ Σ∗
}

.

PDA-2


