
University of Virginia - cs3102: Theory of Computation Spring 2010

PS3 Due: 23 February 2010 (2:00pm)

This problem set covers material through the end of Chapter 2. Answer the first five
questions and optional bonus question 6. For full credit, answers must be concise,
clear, and convincing, not just correct. Note that you only have one week for this
problem set, unlike the first two problem sets. Hence, it is designed to be some-
what shorted than PS1 and PS2, but includes questions to give you an opportunity
to practice solving problems on the topics that will be on Exam 1 than have not been
covered by the first two problem sets.—

You are strongly encouraged to use LaTeX to produce your submission, and we have
provided a LaTeX template to assist with this. You may, however, handwrite your an-
swers so long as your writing is legible and easily interpreted. For full credit, answers
must be concise, clear, and convincing, not just correct.

Collaboration Policy. For this assignment, we will follow the same collaboration
and resource policy as on Problem Set 1 and Problem Set 2. See the Problem Set 1
handout for a full description of the policy. Please keep in mind, though, that for the
Exam you will need to solve problems on your own. Use collaboration to help you
learn, but not in ways that prevent you from learning to solve problems on your own.

Problem 1: Mystery Language. In Class 7, we considered how the language would
change if states q1 and q2 from the NPDA on slide 7 were merged, producing this
NPDA:

Describe precisely the language accepted by this nondeterministic PDA.

Challenge Bonus. Is there a deterministic PDA that recognizes the same
language? Include a convincing proof that supports your answer.

Problem Set 3-1

http://www.cs.virginia.edu/cs3102/ps/ps3/ps3-template.tex

Problem 2: NPDAs and CFGs. Describe a NPDA that recognizes the language pro-
duced by this context-free grammar:

S → 1A | A1 | 0B | B0 | ε
A → 0S1 | 1S0 | CS | SC
B → S11 | 1S1 | 11S
C → 01 | 10

Problem 3: Context-Free Grammars. Provide a context-free grammar that recog-
nizes the language:

{w|w ∈ {a, b}∗ ∧ w contains more as than bs.}

Use as few nonterminals as possible.

Problem 4: Priming the Pump Redux. Prove the language, PRIMES, is not context-
free:

PRIMES = {1n|n is a prime number}

Problem 5: Closure Properties.

a. Prove that the context-free languages are closed under concatenation.

b. Prove that the intersection of a context-free language with a regular language
is always a context-free language.

c. Prove that the context-free languages are not closed under intersection.

Problem 6: Parsing. Below is a slightly simplified excerpt from the actual Java gram-
mar specification (from http://java.sun.com/docs/books/jls/third edition/html/syntax.html#
18.1, Chapter 18). I have changed the syntax to match the context-free grammar no-
tation used in Sipser and the class.

Expression → Expression1 OptAssignmentOperator
OptAssignmentOperator → ε | AssignmentOperator Expression1
Expression1 → Expression2 OptExpression1Rest
OptExpression1Rest → ε | Expression1Rest
Expression1Rest → ? Expression : Expression1
AssignmentOperator → =
Expression2 → Expression3 OptExpression2Rest
OptExpression2Rest → ε | Expression2Rest
Expression2Rest → InfixExpressionList

Problem Set 3-2

http://java.sun.com/docs/books/jls/third_edition/html/syntax.html#18.1
http://java.sun.com/docs/books/jls/third_edition/html/syntax.html#18.1

InfixExpressionList → ε | InfixExpression InfixExpressionList
InfixExpression → InfixOp Expression3
InfixOp → || | && | == | +
Expression3 → Primary SelectorList
Primary → (Expression) | Identifier | Literal
SelectorList → ε | Selector SelectorList
Selector → [Expression] | . Identifier

The terminal Identifier is any valid Java identifier (see Section 3.8 of the Java Lan-
guage Specification for the grammar for Identifiers) and Literal is any literal.

a. Consider the following Java expression:

true ? false ? true == true : false : false == false

which evaluates to false. The Boolean values true, and false are Literals. The
conditional expression, Expressionpred ? Expressionconsequent : Expressionalternate,
is evaluated by first evaluating Expressionpred, which must evaluate to a boolean.
If it evaluates to true, then the value of the conditional expression is the value
obtained by evaluating Expressionconsequent (and Expressionalternate is not evalu-
ated). If it evaluates to false, then the value of the conditional expression is the
value obtained by evaluating Expressionalternate (and Expressionconsequent is not
evaluated).

By adding only parentheses, transform it into a grammatical Java expression
that evaluates to true.

b. Explain how to change the grammar rules so the original expression in the pre-
vious part evaluates to true. Your new grammar should produce exactly the
same language as the original grammar. It is acceptable if your answer leads
to an ambiguous grammar, as long as one possible parse of the expression in
your grammar evaluates to true. (Challenge Bonus. Produce an unambigu-
ous grammar for this question. It should produce exactly the same language as
the original grammar, but the only possible parse of the expression evaluates
to true.)

End of Problem Set 3.

Turn in your stapled submission at the beginning of class on Tues-
day, 23 February 2010.

Problem Set 3-3

