CS588: Cryptology  Principles and Applications, Fall 2001
Lectures 
Manifests 
Problem Sets 
Projects 
Resources 
Syllabus 
Challenges 
Calendar

Challenge 3: ZeroKnowledge Coloring Proofs
In Lecture 15, we saw a zeroknowledge proof technique that used graph coloring but took many iterations to provide adequate security, and a zeroknowledge proof technique that used the Hamiltonial cycle problem and graph isomorphisms to ensure that a prover who does not know the real solution will be wrong 1/2 of the time.For this challenge, you need to either:
A satisfactory solution should include an argument why the obvious extension of the graph coloring zeroknowledge proof technique to use graph isomorphisms is not satisfactory (unless I am wrong on this and you can argue that it can be made to work), a convincing argument why your technique does not reveal useful information to the verifier, and an estimate of the probability of catching a cheater with each trial (or an explanation of why it cannot be done).
 Devise a zeroknowledge proof technique based on graph coloring, where each trial is significantly more useful at increasing the probability of catching a cheater than the (1  1/edges) probability of the technique used in lecture.
 Or, argue convincingly that it is impossible to devise such a technique.
Solutions must use graph coloring in the proof protocol directly. (Obviously, a solution that mapped a graph coloring problem to a Hamiltonian cycle problem would not be interesting, although theoreticians may want to attempt this.)
If you find a solution in the literature (I don't believe one has been published) and can explain it clearly, that is worth 50 points. If you can devise your own solution that is worth 100 points.
University of Virginia Department of Computer Science CS 588: Cryptology  Principles and Applications 
David Evans evans@cs.virginia.edu 