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1. Introduction 

Secure Shell (SSH) is a protocol for secure remote access across an insecure 

network.   Information transferred using SSH is encrypted using strong encryption 

algorithms, providing strong protection from eavesdroppers on the network. Recent 

studies, however, have shown potential weaknesses in SSH that allow eavesdroppers to 

discover transmitted passwords more easily.  These weaknesses are exploited by 

measuring the time between password keystrokes sent by SSH and using that information 

to narrow in on what the password might be—a procedure known as a keystroke timing 

attack [SWT01].  If these weaknesses can be successfully exploited, the security of 

computers using SSH servers will be severely compromised.  Song, Wagner, and Tian, in 

their paper “Timing Analysis of Keystrokes and Timing  Attacks on SSH,” have claimed 

that these weaknesses are real and threatening for SSH [SWT01].  SSH Communications 

Security, on the other hand, insists that exploiting these weaknesses is an impossibility in 

their article “Timing Analysis is Not a Real-Life Threat to SSH Secure Shell Users.”  

This project seeks to determine who is correct. 
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2. Related Work 

 The following sections provide relevant background information on SSH and 

present cases for both sides of the SSH keystroke timing attack practicality debate. 

2.1 Relevant SSH Protocol Information 

Secure Shell (SSH) was invented by Tatu Ylönen in 1995.  It existed in this form 

(SSH-1) until late 1997 / early 1998 when an Internet Draft was submitted for SSH-2 by 

the Internet Engineering Task Force (IETF) [OVER01].  The SSH-2 protocol is an entire 

rewrite of the original one, and it contains many differences.  Some of these differences 

have a marked effect on the feasibility of keystroke timing attacks.   

 Both the SSH-1 and the SSH-2 protocols use public key technology to establish a 

session key.  The session key is used to encrypt and decrypt packets using a symmetric 

cipher.  The table below shows the format of both SSH-1 and SSH-2 packets in the 

correct order.   

SSH-1 SSH-2 
Field Size (bytes) Encrypted

? Field Size (bytes) Encrypted
? 

Length of 
Data Payload 
(N) 

4 No  Length of 
Packet (M) 4 Yes 

Random 
Padding  Yes  

Length of 
Random 
Padding (P) 

1 Yes 

Packet Type 1 Yes  Data Payload M – P – 1 Yes 

Data Payload N Yes  Random 
Padding P Yes 

MAC Mac length No  MAC Mac length No 
[YKM+01,OVER01] 

 The Random Padding fields serve to pad the encrypted information in the packets 

to either the block length of the symmetric cipher or 8 bytes, whichever is greater.   
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The main difference that affects keystroke timing attacks is that in SSH-1, the Length of 

Data Payload field is not encrypted, whereas in SSH-2 it is.  Another difference that 

allows SSH-2 to be more secure in general is the stronger data integrity checks it uses, 

where SSH-1 relies on a cyclic redundancy check (CRC) [YL01].  A feature in both 

versions of SSH that allows keystroke timing attacks to be plausible is the use of 

immediate mode.  Immediate mode sends each keystroke to the server immediately in its 

own packet.  This allows the interactive user experience, and the ability to edit text on-

screen with the use of backspace, for example. 

2.2 Keystroke Timing Attacks are a Practical Threat 

In “Timing Analysis of Keystrokes and Timing Attacks on SSH,” the authors 

claim that SSH leaks password information in two ways.  First, SSH transmits password 

packets that are padded to an eight-byte boundary during the login.  From this, an 

eavesdropper can learn the approximate size of the password by looking at the number of 

packets that are sent.  If only one packet is sent, then the eavesdropper knows the 

password is at most 7 characters long.   

Secondly, when SSH is in interactive mode, it is useful for eavesdroppers to 

monitor the time intervals between sent packets [ZP00].  SSH automatically goes into 

interactive mode after the initial login.  During this mode, eavesdroppers can determine 

which packets contain password characters by carefully monitoring traffic between the 

client and the server.  Passwords are sent during interactive mode on two occasions: 

when a switch user command is executed and when the client starts a nested SSH session.  

The client sends the server an su command (su stands for “switch user”), followed by a 

return, prior to the transmission of a password [SWT01].  After the su command is 

acknowledged, the next packets sent contain the password characters.  These packets are 
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Figure 2 – nested SSH attack [SWT01].

not echoed by the server, thus indicating to the eavesdropper that these packets contain 

the characters of the password.  Figure 1 shows an SSH packet transfer between the client 

and server for an su command execution.  These transfers form a “signature” for 

recognizing the su command.  The numbers indicate the packet size in bytes.  Notice 

how the characters of the password “Julia” are not echoed by the server, indicating that 

those packets contain password characters.   

 

 

 

 

 

 

 

Additionally, [SWT01] argued that password 

character packets can be identified if a nested SSH 

session is started within a currently open session.  

Figure 2 shows such a nested SSH session.  

Although the second SSH session between B and C 

sends the password in one large chunk, the characters of the password are sent in separate 

packets from A to B.  This allows eavesdroppers to sniff these packets and obtain 

information about the password used in the second session. 

Once the password character packets have been identified, keystroke timing 

analysis can be performed on the time intervals to aid in the cracking of the passwords.  

These time intervals can reveal information about the password typed.  Using a 

statistically complex procedure involving Hidden Markov Models and n-Viterbi 

Figure 1 – identifying password character packets sent after an su command in SSH-1 [SWT01]. 
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algorithms (the details of which are beyond the scope of this paper), [SWT01] estimated 

that an attacker “could potentially extract 1.2 bits per character pair” when keystroke 

latency information is known for all possible character pairs present in the password.  

They also argued that since the entropy of English is very low, the “1.2-bit information 

gain per character pair leaked through the latency information seems to be significant.”  

To evaluate these arguments, the team implemented a program called Herbivore that 

attempted keystroke timing attacks on passwords.  Herbivore was able, in their 

experiments, to reduce the search space for randomly chosen 8-character passwords by a 

factor of 50, thus making the password more vulnerable to brute force attacks. 

The authors concluded that the two weaknesses “reveal a surprising amount of 

information on passwords and other text typed over SSH sessions” and as a consequence, 

“SSH is not as secure as commonly believed.”  Others, particularly Yin Zhang and Vern 

Paxson in “Detecting Backdoors,” have presented support for using timing analysis to 

gain information on passwords [ZP00].  Solar Designer and Dug Song have also stated 

that SSH is vulnerable to keystroke timing attacks in a posted message on Bugtraq in 

March 2001 [SD01]. 

2.3 Keystroke Timing Attacks are not a Practical Threat 

The loudest opposition to the previous findings come from SSH Communications 

Security, the makers of SSH Secure Shell software .  The following is the company’s 

statement on keystroke timing attack weaknesses in SSH [SSH01a]:  

The attack presented by [Song, Wagner, and Tian] does not pose a practical threat to SSH 
Secure Shell users because:  

�� SSH Secure Shell transmits the user's normal login password in one encrypted 
packet. Thus, timing the individual characters by monitoring the encrypted traffic is 
not possible.  



6 

�� Determining the length of the packet as described in the article is not possible, 
because SSH Secure Shell 3.0.0 and later pad the password packet so that its length 
cannot be determined.  

�� If a password to another application or server is typed over an established SSH 
Secure Shell connection, performing timing analysis on this password is theoretically 
possible. However, it is not practical in reality, because:  

�� The attack requires reliable per-user reference data on keystroke timings, 
which requires co-operation from the user.  

�� Determining where a password starts in an encrypted connection is 
probabilistic, and the analysis is confused by falsely guessed password 
locations in the session.  

�� According to our analysis, performing the attack on a realistic 8-character 
password with unrestricted character set would require approximately 120 
terabytes (120 000 gigabytes) of memory, which is not feasible with the 
technology available in the next several years.  

�� Even if someone was able to successfully perform the attack, it would only reduce 
the work factor for trying all possible passwords by a factor of 50, which corresponds 
to shortening the password by approximately one character (i.e., an 8-character 
password would become effectively a 7-character password which would still have to 
be guessed correctly).  

 
Although Solar Designer and Dug Song have sided with those who believe in the 

practicality of keystroke timing attacks, they do agree with SSH Secure Communications 

in some respects.  Most notably, they admit that Version 2 of the SSH protocol 

eliminated the weakness of revealing approximate password length during the login 

phase [SD01].  They also mentioned that several SSH vendors have implemented fixes in 

their programs that strengthen the alleged SSH weaknesses. 

2.4 Relevance 

The information presented by both sides of the debate is relevant to the 

conclusion this paper makes on the practicality of keystroke timing attacks.  Any 

significant points, data, and assumptions made by either side must be scrutinized 

carefully in order to develop reliable conclusions.  For example, the fact that SSH Secure 

Communications has a vested interest in maintaining the integrity of their software is 

taken into consideration, as well as [SWT01]’s usage of eight-year-old internet latency 
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statistics and the large amount of password data they gathered prior to attempting 

keystroke attacks. 

2.5 Solutions 

In order to determine whether keystroke timing attacks are a legitimate threat to 

SSH connections in the real world, we decided to investigate some of the ways an 

attacker might try to determine information about an SSH session.  To do this, we 

examined the feasibility of determining keystroke timing information over a network by 

writing simple client and server programs to measure keystroke and packet timing 

intervals.  We also used packet sniffing techniques to examine an SSH session in order to 

find an su command and determine which packets contained the password.  First, 

however, we examined [SWT01]’s claims more carefully. 

2.6 Problems in [SWT01] 

The research done in [SWT01] had the following problems that suggested that 

keystroke timing attacks are not completely practical to execute. 

1. A random password was typed repeatedly so Herbivore could work with reliable 

keystroke timing information.  In reality, SSH attackers would not be provided with 

this large amount of information. 

2. Herbivore only attempted to crack random passwords chosen from a finite character 

space that consisted of combinations of only 10 letters and 5 numbers—142 character 

pairs total. This comprises only 3% of the total 4,278 possible pairs of letters, 

numbers, and special characters than may be present in a realistic password. 

3. The network delay and Internet lag statistics used in the calculations were taken from 

a 1993 report.  As a result, delay was ignored in their experiments, despite the fact 
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that current Internet latencies, which can reach over 170ms, are significant. 

4. [SWT01] used SSH-1 in their experiments. SSH-1 has the notorious weakness of not 

encrypting the payload length field in the header.  This field only records length of 

the actual payload data, not the padding that is added to the packets.  With this 

information, it is easier to recognize su signatures (see Figure 1).  Using SSH-2, 

however, obtaining the length of the actual data is much more difficult, if not 

impossible, because SSH-2 encrypts the payload length. 

2.7 Measuring Keystroke Timing over a Network 

2.7.1 Methodology 

In order to determine precise keystroke timing information over a real network, 

we first developed simple client and server programs.  When the server is run on a 

machine, it waits for connections from the client.  When the client is run from another 

machine, it establishes a connection with the server socket.  (By specifying a 

preprocessor directive in the code, we can set the programs to use SSL or simple, 

unencrypted sockets.) Then, whenever a key is pressed on the client, that key is sent to 

the server, along with the time difference since the last key was pressed.  When the server 

receives one of these packets, it prints the key, the received time difference, and the time 

difference since the last packet it received from the client. This allows us to observe the 

timing difference between adjacent keystrokes, both on the client side, where the timing 

can be measured without network delay, and on the server side, where the time difference 

is a function of both the actual keystroke timing and the network delay. 

In order to see how network traffic influenced our ability to observe keystroke 

timing parameters, we performed this experiment several times, using different machines 
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and at different times of the day.   

2.7.2 Data Analysis 

After examining the time delays introduced by the network, it was apparent that 

these delays would make SSH keystroke timing attacks very difficult.  As Figure 3 

demonstrates, the network latency can be relatively large in comparison to the inter-

keystroke timing.  However, having a large latency will not thwart the keystroke timing 

attack.  If the latency is constant, it will merely add a constant offset to the packet times, 

leaving the times between packets the same as the times between keystrokes. 

The average interval between keystrokes when typing a password is around 208 

ms.  The average network latency for these packets is 1.8 ms.  However, the latency 

varies widely, having a standard deviation of approximately 48.1ms.  By introducing a 

somewhat random delay, the latency will change the packet arrival times and thus alter 

the perceived inter-keystroke timing.  Because keystroke timing attacks rely on precise 
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information about the inter-keystroke timing intervals, this variance makes performing 

statistical analysis exceedingly difficult.  This point is moot for a sniffer running on the 

same network node as the client, but that situation is much less useful to an attacker and a 

keystroke timing attack would likely yield no useful information.   

 

2.8 Packet Sniffing Techniques 

2.8.1 Methodology 

In order to isolate the user’s password in a TCP stream, one can attempt to detect 

the SSH signature of the UNIX su command and the following password.  The su 

command signature is presented in Figure 2.  In order to test the feasibility of this attack, 

we attempted to implement the scheme presented in Song using the packet sniffer 

Ethereal.  Ethereal is a generic packet sniffer which sets the Ethernet card to promiscuous 

mode, allowing it to report all network traffic on the local subnet.   

We began an SSH session between our local machine and one of the nodes in 

UVA’s ‘blue.unix’ cluster.  We then started Ethereal on the local machine, allowing us to 

examine all SSH traffic in its encrypted format between the two machines.   

Once we had the ability to observe the encrypted packets between our local 

machine and the ‘blue.unix’ node, we then performed several su commands, observing 

the traffic generated by each keystroke.  Because the su command is executed in SSH’s 

interactive mode, each key-press generates a packet to be sent to the ‘blue.unix’ host 

node.  Then the host acknowledges and echoes each keystroke back to the client, and 

finally, the client acknowledges the character it received, printing the character on the 

screen.  However, passwords are never printed on the screen, so the packets containing 
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the characters of the password are sent to host, but are not echoed back to the client.  The 

packets which are not echoed correspond to the characters of the password. 

We performed this experiment between several different client / server pairs, 

using both the SSH-1 and SSH-2 protocols.   

2.8.2 Data Analysis 

By examining the SSH session packet logs for each scenario, we found that it is 

often very difficult to determine when the su command and the following password 

occur in the packet stream.  In particular, the SSH session packet stream depends largely 

on the implementation of the SSH server used in the connection.   The su signatures 

from various client / server pairs can be seen in Appendix A. 

When connecting to ‘blue.unix,’ which uses the SSH Secure Shell v2.4.0 server, 

there was a clear pattern to indicate the presence of an su command in the packet stream.  

The ‘s,’ ‘u,’ and return characters are echoed by the server, and then the password prompt 

is sent.  Then the client sends an un-echoed stream of characters representing the 

password.  Someone searching the session for this pattern could very easily identify the 

su command. 

However, the machine ‘sgi-8,’ which uses the newer SSH Secure Shell v3.0.1, has 

no clear pattern to indicate the presence of an su command.  Each character sent in 

immediate mode generates four packets.  First the character is sent from client to server.  

Then it is acknowledged by the server.  Then it is echoed by the server.  Finally, the 

client acknowledges the echoed character.  The problem in detecting as signature arises 

because this sequence is the same whether the packet is echoed or not.  When the actual 

password characters are being typed, the server still sends dummy packets to take the 

place of an echoed  character.  Furthermore, every packet containing data has the same 
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packet length.  This prevents the identification of the su command signature.  Likewise, 

the data in Appendix A for ‘littlenerd.dorm,’ which uses OpenSSH v2.9, follows a 

similar pattern. 

We have determined that the implementation of the SSH server plays a very large 

role in determining whether the su command has a detectable signature.  The SSH 

protocol allows the server to easily send dummy packets which obfuscate the pattern.  

Whether or not the SSH server does this plays a large role in its security. 

3. Evaluation 

Our goal was to determine the efficacy of keystroke timing attacks on encrypted 

SSH sessions.  To this end, we performed several experiments to estimate the 

vulnerability of SSH in the real world.  The experiments we performed are very 

representative of the methodology an attack would use.  In addition, our experiments 

were performed using modern, real-life equipment as opposed to laboratory conditions.  

Our data takes into account the parameters of these real-world scenarios.  For example, 

Song’s research assumes an average Internet latency of 10 ms [SWT01].  We found that 

the latency could likely be much larger, and that latency variance is more important than 

average latency when performing keystroke timing attacks. 

Even though we used real-world networks and equipment, the scenarios examined 

in our experiments are a very small subset of all the scenarios in which SSH may be used.  

For this reason, it would be helpful to perform our SSH keystroke analysis experiments 

on a wider variety of networks, with many different clients and servers. 

4. Conclusion 

Our findings indicate that network latency on a network with any significant 
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traffic is enough to obscure any significant keystroke timing information.  Furthermore, 

the variation in SSH protocol implementations make it difficult to find the signatures of 

specific commands typed in an interactive SSH session.  It is particularly hard to do this 

for some SSH servers, because these servers send dummy packets to fake an echo for 

every character. 

We are not claiming that SSH is a totally secure means for communication – it is 

impossible to determine for certain that a protocol is entirely safe.  In contrast, a protocol 

can be demonstrated insecure by finding only one vulnerability.  We are merely claiming 

that the keystroke timing vulnerabilities found so far in the SSH protocol are mostly of 

academic interest, and difficult to apply in the real world. 
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Appendix A – su signatures 

SSH-2: littlenerd.dorm to blue.unix 

Time Source Destination Flags Length
3.098878 littlenerd.dorm blue.unix [PSH,ACK] 40 
3.101986 blue.unix littlenerd.dorm [PSH,ACK] 40 
3.102006 littlenerd.dorm blue.unix [ACK] 0 
5.745584 littlenerd.dorm blue.unix [PSH,ACK] 40 
5.748593 blue.unix littlenerd.dorm [PSH,ACK] 40 
5.748619 littlenerd.dorm blue.unix [ACK] 0 
7.311973 littlenerd.dorm blue.unix [PSH,ACK] 40 
7.315193 blue.unix littlenerd.dorm [PSH,ACK] 40 
7.315209 littlenerd.dorm blue.unix [ACK] 0 
7.400233 blue.unix littlenerd.dorm [PSH,ACK] 48 
7.400246 littlenerd.dorm blue.unix [ACK] 0 
7.401544 blue.unix littlenerd.dorm [PSH,ACK] 48 
7.401556 littlenerd.dorm blue.unix [ACK] 0 
11.938379 littlenerd.dorm blue.unix [PSH,ACK] 40 
12.111122 blue.unix littlenerd.dorm [ACK] 0 
12.303909 littlenerd.dorm blue.unix [PSH,ACK] 40 
12.321037 blue.unix littlenerd.dorm [ACK] 0 
12.77418 littlenerd.dorm blue.unix [PSH,ACK] 40 
12.950947 blue.unix littlenerd.dorm [ACK] 0 
13.234006 littlenerd.dorm blue.unix [PSH,ACK] 40 
13.371064 blue.unix littlenerd.dorm [ACK] 0 
13.628537 littlenerd.dorm blue.unix [PSH,ACK] 40 
13.780939 blue.unix littlenerd.dorm [ACK] 0 
16.450322 littlenerd.dorm blue.unix [PSH,ACK] 40 
16.460849 blue.unix littlenerd.dorm [PSH,ACK] 40 
16.460864 littlenerd.dorm blue.unix [ACK] 0 
16.495927 blue.unix littlenerd.dorm [PSH,ACK] 56 
16.495938 littlenerd.dorm blue.unix [ACK] 0 
16.498394 blue.unix littlenerd.dorm [PSH,ACK] 64 
16.498405 littlenerd.dorm blue.unix [ACK] 0 
16.499729 blue.unix littlenerd.dorm [PSH,ACK] 88 
16.499741 littlenerd.dorm blue.unix [ACK] 0 
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SSH-2: littlenerd.dorm to sgi-8 

Time Source Destination Flags Length
2.3337 littlenerd.dorm sgi-8 [PSH,ACK] 48 
2.335359 sgi-8 littlenerd.dorm [ACK] 0 
2.33744 sgi-8 littlenerd.dorm [PSH,ACK] 48 
2.337454 littlenerd.dorm sgi-8 [ACK] 0 
2.874851 littlenerd.dorm sgi-8 [PSH,ACK] 48 
2.876256 sgi-8 littlenerd.dorm [ACK] 0 
2.877779 sgi-8 littlenerd.dorm [PSH,ACK] 48 
2.877793 littlenerd.dorm sgi-8 [ACK] 0 
12.208276 littlenerd.dorm sgi-8 [PSH,ACK] 48 
12.209923 sgi-8 littlenerd.dorm [ACK] 0 
12.211717 sgi-8 littlenerd.dorm [PSH,ACK] 48 
12.21173 littlenerd.dorm sgi-8 [ACK] 0 
12.278076 sgi-8 littlenerd.dorm [PSH,ACK] 48 
12.27809 littlenerd.dorm sgi-8 [ACK] 0 
13.87318 littlenerd.dorm sgi-8 [PSH,ACK] 48 
13.87456 sgi-8 littlenerd.dorm [ACK] 0 
14.145405 littlenerd.dorm sgi-8 [PSH,ACK] 48 
14.147019 sgi-8 littlenerd.dorm [ACK] 0 
14.396384 littlenerd.dorm sgi-8 [PSH,ACK] 48 
14.398676 sgi-8 littlenerd.dorm [ACK] 0 
14.650641 littlenerd.dorm sgi-8 [PSH,ACK] 48 
14.651963 sgi-8 littlenerd.dorm [ACK] 0 
14.883592 littlenerd.dorm sgi-8 [PSH,ACK] 48 
14.885102 sgi-8 littlenerd.dorm [ACK] 0 
15.124763 littlenerd.dorm sgi-8 [PSH,ACK] 48 
15.126104 sgi-8 littlenerd.dorm [ACK] 0 
15.371296 littlenerd.dorm sgi-8 [PSH,ACK] 48 
15.372559 sgi-8 littlenerd.dorm [ACK] 0 
15.628701 littlenerd.dorm sgi-8 [PSH,ACK] 48 
15.630228 sgi-8 littlenerd.dorm [ACK] 0 
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SSH-2: blue.unix to littlenerd.dorm 

Time Source Destination Flags Length
1.752113 blue.unix littlenerd.dorm [PSH,ACK] 52 
1.752405 littlenerd.dorm blue.unix [PSH,ACK] 52 
1.773471 blue.unix littlenerd.dorm [ACK] 0 
2.05564 blue.unix littlenerd.dorm [PSH,ACK] 52 
2.055825 littlenerd.dorm blue.unix [PSH,ACK] 52 
2.193668 blue.unix littlenerd.dorm [ACK] 0 
2.279993 blue.unix littlenerd.dorm [PSH,ACK] 52 
2.280624 littlenerd.dorm blue.unix [PSH,ACK] 52 
2.286287 littlenerd.dorm blue.unix [PSH,ACK] 52 
2.401127 blue.unix littlenerd.dorm [ACK] 0 
4.090947 blue.unix littlenerd.dorm [PSH,ACK] 52 
4.091171 littlenerd.dorm blue.unix [PSH,ACK] 52 
4.272255 blue.unix littlenerd.dorm [ACK] 0 
4.373262 blue.unix littlenerd.dorm [PSH,ACK] 52 
4.373389 littlenerd.dorm blue.unix [PSH,ACK] 52 
4.473753 blue.unix littlenerd.dorm [ACK] 0 
4.923786 blue.unix littlenerd.dorm [PSH,ACK] 52 
4.924057 littlenerd.dorm blue.unix [PSH,ACK] 52 
5.103766 blue.unix littlenerd.dorm [ACK] 0 
5.265581 blue.unix littlenerd.dorm [PSH,ACK] 52 
5.265704 littlenerd.dorm blue.unix [PSH,ACK] 52 
5.313938 blue.unix littlenerd.dorm [ACK] 0 
5.49171 blue.unix littlenerd.dorm [PSH,ACK] 52 
5.491922 littlenerd.dorm blue.unix [PSH,ACK] 52 
5.52352 blue.unix littlenerd.dorm [ACK] 0 
5.602852 blue.unix littlenerd.dorm [PSH,ACK] 52 
5.602933 littlenerd.dorm blue.unix [PSH,ACK] 52 
5.733511 blue.unix littlenerd.dorm [ACK] 0 
5.826174 blue.unix littlenerd.dorm [PSH,ACK] 52 
5.826256 littlenerd.dorm blue.unix [PSH,ACK] 52 
5.943385 blue.unix littlenerd.dorm [ACK] 0 
6.049279 blue.unix littlenerd.dorm [PSH,ACK] 52 
6.049366 littlenerd.dorm blue.unix [PSH,ACK] 52 
6.14648 blue.unix littlenerd.dorm [ACK] 0 
6.222497 blue.unix littlenerd.dorm [PSH,ACK] 52 
6.222585 littlenerd.dorm blue.unix [PSH,ACK] 52 
6.353631 blue.unix littlenerd.dorm [ACK] 0 
6.387635 blue.unix littlenerd.dorm [PSH,ACK] 52 
6.387844 littlenerd.dorm blue.unix [PSH,ACK] 52 
6.387932 littlenerd.dorm blue.unix [PSH,ACK] 52 
6.563442 blue.unix littlenerd.dorm [ACK] 0 
6.563494 littlenerd.dorm blue.unix [PSH,ACK] 152 
6.773544 blue.unix littlenerd.dorm [ACK] 0 
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Appendix B – keystroke-timing client & server code 

ktclient.cpp 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <termios.h> 
#include <stdio.h> 
#include <string.h> 
#include <sys/timeb.h> 
 
#define USE_SSL 
 
#ifdef USE_SSL 
 
#include <openssl/ssl.h> 
#include <openssl/err.h> 
 
#endif 
 
 
 
int main(int argc, char **argv) 
{ 
  int port; 
  int result = 0; 
  struct hostent *server_name = 0; 
 
  if ((argc != 3) || ((server_name = gethostbyname(argv[1])) == 0) 
      || (sscanf(argv[2], "%d", &port) != 1)) 
  { 
    printf("Usage: %s <ip addr.> <port no.>\n", argv[0]); 
    return 1; 
  } 
 
  int sd, accepted_sd; 
  socklen_t client_size; 
  struct sockaddr_in client_addr, server_addr; 
 
#ifdef USE_SSL 
  OpenSSL_add_all_algorithms(); 
  SSL_load_error_strings(); 
  SSL_library_init(); 
 
  fprintf(stderr, "Getting SSL context ... "); 
  SSL_CTX *ssl_context = SSL_CTX_new(SSLv23_client_method()); 
  if (!ssl_context) 
  { 
    fprintf(stderr, "failed:\n\t%s.\n", ERR_error_string(ERR_get_error(), 0)); 
    return 1; 
  } 
  fprintf(stderr, "success.\n"); 
 
  fprintf(stderr, "Getting SSL ... "); 
  SSL *ssl = SSL_new(ssl_context); 
  if (!ssl) 
  { 
    fprintf(stderr, "failed:\n\t%s.\n", ERR_error_string(ERR_get_error(), 0)); 
    return 1; 
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  } 
  fprintf(stderr, "success.\n"); 
#endif 
 
 
  // create socket 
  fprintf(stderr, "Creating socket ... "); 
  sd = socket(AF_INET, SOCK_STREAM, 0); 
  if (sd < 0) 
  { 
    fprintf(stderr, "failed.\n"); 
    return 1; 
  } 
  fprintf(stderr, "success.\n"); 
 
  // bind port 
  fprintf(stderr, "Binding port %d ... ", port); 
 
  server_addr.sin_family = server_name->h_addrtype; 
  memcpy((char *) &server_addr.sin_addr.s_addr,  
         server_name->h_addr_list[0], server_name->h_length); 
  server_addr.sin_port = htons(port); 
 
  client_addr.sin_family = AF_INET; 
  client_addr.sin_addr.s_addr = htonl(INADDR_ANY); 
  client_addr.sin_port = htons(0); 
  if (bind(sd, (struct sockaddr *) &client_addr, 
      sizeof(client_addr)) < 0) 
  { 
    fprintf(stderr, "failed.\n"); 
    return 1; 
  } 
  fprintf(stderr, "success.\n"); 
 
  // connect 
  fprintf(stderr, "Connecting ... "); 
  result = connect(sd, (struct sockaddr *) &server_addr, sizeof(server_addr)); 
  if(result < 0) 
  { 
    fprintf(stderr, "failed.\n"); 
    return 1; 
  } 
  fprintf(stderr, "success.\n"); 
 
#ifdef USE_SSL 
  fprintf(stderr, "Initializing SSL ... "); 
  result = SSL_set_fd(ssl, sd); 
  if (result != 1) 
    fprintf(stderr, "failed:\n\t%s.\n", ERR_error_string(ERR_get_error(), 0)); 
  else 
    fprintf(stderr, "success.\n"); 
   
  fprintf(stderr, "Awaiting secure connection ... "); 
  result = SSL_connect(ssl); 
  if (result != 1) 
    fprintf(stderr, "failed:\n\t%s.\n", ERR_error_string(ERR_get_error(), 0)); 
  else 
    fprintf(stderr, "success.\n"); 
#endif 
 
 
 
  // enter raw mode so we can get each keystroke 
  struct termios term_mode; 
  tcgetattr(0, &term_mode); 
  fprintf(stderr, "Entering raw mode ... "); 
  term_mode.c_lflag &= ~ICANON; 
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  tcsetattr(0, 0, &term_mode); 
  fprintf(stderr, "all set.\n"); 
   
 
  char ch; 
  char buf[4097]; 
  int bytes_sent = 0; 
  timeb t; 
  double current_time, previous_time; 
 
  ftime(&t); 
  current_time = t.time + 0.001*t.millitm; 
 
  do 
  { 
    previous_time = current_time; 
 
    ch = getc(stdin); 
 
    ftime(&t); 
    current_time = t.time + 0.001*t.millitm; 
 
    fprintf(stderr, " : %.3f\n", current_time - previous_time); 
    sprintf(buf, "%c %.3f", ch, current_time - previous_time); 
 
#ifdef USE_SSL 
    bytes_sent = SSL_write(ssl, buf, strlen(buf)); 
#else 
    bytes_sent = send(sd, (void *)(buf), strlen(buf), 0); 
#endif 
    if (bytes_sent < 0) 
      fprintf(stderr, "Error.\n"); 
 
  } while (1); 
 
#ifdef USE_SSL 
  SSL_free(ssl); 
#endif 
 
 
  return 0; 
} 
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ktserver.cpp 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdio.h> 
#include <sys/timeb.h> 
 
#define USE_SSL 
 
#ifdef USE_SSL 
 
#include <openssl/ssl.h> 
#include <openssl/err.h> 
 
#endif 
 
 
#define STDOUT stdout 
#define ERROUT stderr 
 
int main(int argc, char **argv) 
{ 
  int port; 
  int result = 0; 
 
  if ((argc != 2) || (sscanf(argv[1], "%d", &port) != 1)) 
  { 
    fprintf(ERROUT, "Usage: %s <port no.>\n", argv[0]); 
    return 1; 
  } 
 
  int sd, accepted_sd; 
  socklen_t client_size; 
  struct sockaddr_in client_addr, server_addr; 
 
 
  setbuf(STDOUT, 0); 
  setbuf(ERROUT, 0); 
 
#ifdef USE_SSL 
  OpenSSL_add_all_algorithms(); 
  SSL_load_error_strings(); 
  SSL_library_init(); 
 
  SSL_CTX *ssl_context = SSL_CTX_new(SSLv23_server_method()); 
  if (!ssl_context) 
  { 
    fprintf(ERROUT, "Getting SSL context failed:\n\t%s.\n", 
            ERR_error_string(ERR_get_error(), 0)); 
    return 1; 
  } 
 
  result = SSL_CTX_use_certificate_file(ssl_context, "server-req.pem", 
                                        SSL_FILETYPE_PEM); 
  if (result != 1) 
  { 
    fprintf(ERROUT, "Initializing certificate failed:\n\t%s.\n", 
            ERR_error_string(ERR_get_error(), 0)); 
    return 1; 
  } 
   
  result = SSL_CTX_use_PrivateKey_file(ssl_context, "server-key.pem", 
                                       SSL_FILETYPE_PEM); 
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  if (result != 1) 
  { 
    fprintf(ERROUT, "Initializing key failed:\n\t%s.\n", 
            ERR_error_string(ERR_get_error(), 0)); 
    return 1; 
  } 
 
  SSL *ssl = 0; 
#endif 
 
 
  // create socket 
  sd = socket(AF_INET, SOCK_STREAM, 0); 
  if (sd < 0) 
  { 
    fprintf(ERROUT, "Creating socket failed.\n"); 
    return 1; 
  } 
 
  // bind port 
  server_addr.sin_family = AF_INET; 
  server_addr.sin_addr.s_addr = htonl(INADDR_ANY); 
  server_addr.sin_port = htons(port); 
  if (bind(sd, (struct sockaddr *) &server_addr, 
      sizeof(server_addr)) < 0) 
  { 
    fprintf(ERROUT, "Binding port failed.\n"); 
    return 1; 
  } 
 
  // listen 
  result = listen(sd, 5); 
  if (result != 0) 
  { 
    fprintf(ERROUT, "Starting to listen failed: %d.\n", result); 
    return 1; 
  } 
 
 
 
  do 
  { 
 
    fprintf(STDOUT, "----------------------------------------\n"); 
    client_size = sizeof(client_addr); 
    accepted_sd = accept(sd, (struct sockaddr *) &client_addr, 
                         &client_size); 
    if (accepted_sd < 0) 
    { 
      fprintf(ERROUT, "Waiting for connection failed.\n"); 
      return 1; 
    } 
 
#ifdef USE_SSL 
    ssl = SSL_new(ssl_context); 
    if (!ssl) 
    { 
      fprintf(ERROUT, "Initializing SSL failed:\n\t%s.\n", 
ERR_error_string(ERR_get_error(), 0)); 
      return 1; 
    } 
 
    result = SSL_set_fd(ssl, accepted_sd); 
    if (result != 1) 
      fprintf(ERROUT, "Securing connection failed:\n\t%s.\n", 
ERR_error_string(ERR_get_error(), 0)); 
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    result = SSL_accept(ssl); 
    if (result != 1) 
      fprintf(ERROUT, "Accepting secure connection failed:\n\t%s.\n", 
ERR_error_string(ERR_get_error(), 0)); 
#endif 
     
    unsigned char *client_ip = (unsigned char *)&client_addr.sin_addr.s_addr; 
    fprintf(STDOUT, "Connected to %d.%d.%d.%d.\n", client_ip[0], client_ip[1], 
client_ip[2], client_ip[3]); 
 
    char buf[4097]; 
    int bytes_read = 0; 
    timeb t; 
    double current_time, previous_time; 
 
    ftime(&t); 
    current_time = t.time + 0.001*t.millitm; 
 
    do 
    { 
      previous_time = current_time; 
 
#ifdef USE_SSL 
      bytes_read = SSL_read(ssl, buf, sizeof(buf) - 1); 
#else 
      bytes_read = recv(accepted_sd, (void *)buf, sizeof(buf) - 1, 0); 
#endif 
      ftime(&t); 
      current_time = t.time + 0.001*t.millitm; 
 
      if (bytes_read > 0) 
      { 
 buf[bytes_read] = 0; 
 
 if (buf[0] == '\n') 
   buf[0] = ' '; 
 
 fprintf(STDOUT, "%s : %.3f\n", buf, 
              current_time - previous_time); 
      } 
 
    } while (bytes_read > 0); 
 
    if (bytes_read != 0) 
      fprintf(ERROUT, "Communication error.\n"); 
 
#ifdef USE_SSL 
    SSL_free(ssl); 
#endif 
 
  } while (1); 
 
 
 
  return 1; 
} 
 


