
CS588 Research Project
School of Engineering and Applied Science

University of Virginia

Analysis of the Feasibility of Keystroke Timing Attacks

Over SSH Connections

Submitted by:

 Michael Augustus Hogye
Christopher Thaddeus Hughes

Joshua Michael Sarfaty
Joseph David Wolf

CS 588 – Cryptology
December 5, 2001

 ii

Table of Contents

1. Introduction..1
2. Related Work ...2

2.1 Relevant SSH Protocol Information..2
2.2 Keystroke Timing Attacks are a Practical Threat ...3
2.3 Keystroke Timing Attacks are not a Practical Threat ...5
2.4 Relevance ..6
2.5 Solutions..7
2.6 Problems in [SWT01] ...7
2.7 Measuring Keystroke Timing over a Network..8

2.7.1 Methodology ..8
2.7.2 Data Analysis...9

2.8 Packet Sniffing Techniques...10
2.8.1 Methodology ..10
2.8.2 Data Analysis...11

3. Evaluation ..12
4. Conclusion ...12
5. References..14
Appendix A – su signatures..15

SSH-2: littlenerd.dorm to blue.unix ..15
SSH-2: littlenerd.dorm to sgi-8 ...16
SSH-2: blue.unix to littlenerd.dorm ..17

Appendix B – keystroke-timing client & server code ...18
ktclient.cpp ..18
ktserver.cpp ...21

1

1. Introduction

Secure Shell (SSH) is a protocol for secure remote access across an insecure

network. Information transferred using SSH is encrypted using strong encryption

algorithms, providing strong protection from eavesdroppers on the network. Recent

studies, however, have shown potential weaknesses in SSH that allow eavesdroppers to

discover transmitted passwords more easily. These weaknesses are exploited by

measuring the time between password keystrokes sent by SSH and using that information

to narrow in on what the password might be—a procedure known as a keystroke timing

attack [SWT01]. If these weaknesses can be successfully exploited, the security of

computers using SSH servers will be severely compromised. Song, Wagner, and Tian, in

their paper “Timing Analysis of Keystrokes and Timing Attacks on SSH,” have claimed

that these weaknesses are real and threatening for SSH [SWT01]. SSH Communications

Security, on the other hand, insists that exploiting these weaknesses is an impossibility in

their article “Timing Analysis is Not a Real-Life Threat to SSH Secure Shell Users.”

This project seeks to determine who is correct.

2

2. Related Work

 The following sections provide relevant background information on SSH and

present cases for both sides of the SSH keystroke timing attack practicality debate.

2.1 Relevant SSH Protocol Information

Secure Shell (SSH) was invented by Tatu Ylönen in 1995. It existed in this form

(SSH-1) until late 1997 / early 1998 when an Internet Draft was submitted for SSH-2 by

the Internet Engineering Task Force (IETF) [OVER01]. The SSH-2 protocol is an entire

rewrite of the original one, and it contains many differences. Some of these differences

have a marked effect on the feasibility of keystroke timing attacks.

 Both the SSH-1 and the SSH-2 protocols use public key technology to establish a

session key. The session key is used to encrypt and decrypt packets using a symmetric

cipher. The table below shows the format of both SSH-1 and SSH-2 packets in the

correct order.

SSH-1 SSH-2
Field Size (bytes) Encrypted

? Field Size (bytes) Encrypted
?

Length of
Data Payload
(N)

4 No Length of
Packet (M) 4 Yes

Random
Padding Yes

Length of
Random
Padding (P)

1 Yes

Packet Type 1 Yes Data Payload M – P – 1 Yes

Data Payload N Yes Random
Padding P Yes

MAC Mac length No MAC Mac length No
[YKM+01,OVER01]

 The Random Padding fields serve to pad the encrypted information in the packets

to either the block length of the symmetric cipher or 8 bytes, whichever is greater.

3

The main difference that affects keystroke timing attacks is that in SSH-1, the Length of

Data Payload field is not encrypted, whereas in SSH-2 it is. Another difference that

allows SSH-2 to be more secure in general is the stronger data integrity checks it uses,

where SSH-1 relies on a cyclic redundancy check (CRC) [YL01]. A feature in both

versions of SSH that allows keystroke timing attacks to be plausible is the use of

immediate mode. Immediate mode sends each keystroke to the server immediately in its

own packet. This allows the interactive user experience, and the ability to edit text on-

screen with the use of backspace, for example.

2.2 Keystroke Timing Attacks are a Practical Threat

In “Timing Analysis of Keystrokes and Timing Attacks on SSH,” the authors

claim that SSH leaks password information in two ways. First, SSH transmits password

packets that are padded to an eight-byte boundary during the login. From this, an

eavesdropper can learn the approximate size of the password by looking at the number of

packets that are sent. If only one packet is sent, then the eavesdropper knows the

password is at most 7 characters long.

Secondly, when SSH is in interactive mode, it is useful for eavesdroppers to

monitor the time intervals between sent packets [ZP00]. SSH automatically goes into

interactive mode after the initial login. During this mode, eavesdroppers can determine

which packets contain password characters by carefully monitoring traffic between the

client and the server. Passwords are sent during interactive mode on two occasions:

when a switch user command is executed and when the client starts a nested SSH session.

The client sends the server an su command (su stands for “switch user”), followed by a

return, prior to the transmission of a password [SWT01]. After the su command is

acknowledged, the next packets sent contain the password characters. These packets are

4

Figure 2 – nested SSH attack [SWT01].

not echoed by the server, thus indicating to the eavesdropper that these packets contain

the characters of the password. Figure 1 shows an SSH packet transfer between the client

and server for an su command execution. These transfers form a “signature” for

recognizing the su command. The numbers indicate the packet size in bytes. Notice

how the characters of the password “Julia” are not echoed by the server, indicating that

those packets contain password characters.

Additionally, [SWT01] argued that password

character packets can be identified if a nested SSH

session is started within a currently open session.

Figure 2 shows such a nested SSH session.

Although the second SSH session between B and C

sends the password in one large chunk, the characters of the password are sent in separate

packets from A to B. This allows eavesdroppers to sniff these packets and obtain

information about the password used in the second session.

Once the password character packets have been identified, keystroke timing

analysis can be performed on the time intervals to aid in the cracking of the passwords.

These time intervals can reveal information about the password typed. Using a

statistically complex procedure involving Hidden Markov Models and n-Viterbi

Figure 1 – identifying password character packets sent after an su command in SSH-1 [SWT01].

5

algorithms (the details of which are beyond the scope of this paper), [SWT01] estimated

that an attacker “could potentially extract 1.2 bits per character pair” when keystroke

latency information is known for all possible character pairs present in the password.

They also argued that since the entropy of English is very low, the “1.2-bit information

gain per character pair leaked through the latency information seems to be significant.”

To evaluate these arguments, the team implemented a program called Herbivore that

attempted keystroke timing attacks on passwords. Herbivore was able, in their

experiments, to reduce the search space for randomly chosen 8-character passwords by a

factor of 50, thus making the password more vulnerable to brute force attacks.

The authors concluded that the two weaknesses “reveal a surprising amount of

information on passwords and other text typed over SSH sessions” and as a consequence,

“SSH is not as secure as commonly believed.” Others, particularly Yin Zhang and Vern

Paxson in “Detecting Backdoors,” have presented support for using timing analysis to

gain information on passwords [ZP00]. Solar Designer and Dug Song have also stated

that SSH is vulnerable to keystroke timing attacks in a posted message on Bugtraq in

March 2001 [SD01].

2.3 Keystroke Timing Attacks are not a Practical Threat

The loudest opposition to the previous findings come from SSH Communications

Security, the makers of SSH Secure Shell software . The following is the company’s

statement on keystroke timing attack weaknesses in SSH [SSH01a]:

The attack presented by [Song, Wagner, and Tian] does not pose a practical threat to SSH
Secure Shell users because:

�� SSH Secure Shell transmits the user's normal login password in one encrypted
packet. Thus, timing the individual characters by monitoring the encrypted traffic is
not possible.

6

�� Determining the length of the packet as described in the article is not possible,
because SSH Secure Shell 3.0.0 and later pad the password packet so that its length
cannot be determined.

�� If a password to another application or server is typed over an established SSH
Secure Shell connection, performing timing analysis on this password is theoretically
possible. However, it is not practical in reality, because:

�� The attack requires reliable per-user reference data on keystroke timings,
which requires co-operation from the user.

�� Determining where a password starts in an encrypted connection is
probabilistic, and the analysis is confused by falsely guessed password
locations in the session.

�� According to our analysis, performing the attack on a realistic 8-character
password with unrestricted character set would require approximately 120
terabytes (120 000 gigabytes) of memory, which is not feasible with the
technology available in the next several years.

�� Even if someone was able to successfully perform the attack, it would only reduce
the work factor for trying all possible passwords by a factor of 50, which corresponds
to shortening the password by approximately one character (i.e., an 8-character
password would become effectively a 7-character password which would still have to
be guessed correctly).

Although Solar Designer and Dug Song have sided with those who believe in the

practicality of keystroke timing attacks, they do agree with SSH Secure Communications

in some respects. Most notably, they admit that Version 2 of the SSH protocol

eliminated the weakness of revealing approximate password length during the login

phase [SD01]. They also mentioned that several SSH vendors have implemented fixes in

their programs that strengthen the alleged SSH weaknesses.

2.4 Relevance

The information presented by both sides of the debate is relevant to the

conclusion this paper makes on the practicality of keystroke timing attacks. Any

significant points, data, and assumptions made by either side must be scrutinized

carefully in order to develop reliable conclusions. For example, the fact that SSH Secure

Communications has a vested interest in maintaining the integrity of their software is

taken into consideration, as well as [SWT01]’s usage of eight-year-old internet latency

7

statistics and the large amount of password data they gathered prior to attempting

keystroke attacks.

2.5 Solutions

In order to determine whether keystroke timing attacks are a legitimate threat to

SSH connections in the real world, we decided to investigate some of the ways an

attacker might try to determine information about an SSH session. To do this, we

examined the feasibility of determining keystroke timing information over a network by

writing simple client and server programs to measure keystroke and packet timing

intervals. We also used packet sniffing techniques to examine an SSH session in order to

find an su command and determine which packets contained the password. First,

however, we examined [SWT01]’s claims more carefully.

2.6 Problems in [SWT01]

The research done in [SWT01] had the following problems that suggested that

keystroke timing attacks are not completely practical to execute.

1. A random password was typed repeatedly so Herbivore could work with reliable

keystroke timing information. In reality, SSH attackers would not be provided with

this large amount of information.

2. Herbivore only attempted to crack random passwords chosen from a finite character

space that consisted of combinations of only 10 letters and 5 numbers—142 character

pairs total. This comprises only 3% of the total 4,278 possible pairs of letters,

numbers, and special characters than may be present in a realistic password.

3. The network delay and Internet lag statistics used in the calculations were taken from

a 1993 report. As a result, delay was ignored in their experiments, despite the fact

8

that current Internet latencies, which can reach over 170ms, are significant.

4. [SWT01] used SSH-1 in their experiments. SSH-1 has the notorious weakness of not

encrypting the payload length field in the header. This field only records length of

the actual payload data, not the padding that is added to the packets. With this

information, it is easier to recognize su signatures (see Figure 1). Using SSH-2,

however, obtaining the length of the actual data is much more difficult, if not

impossible, because SSH-2 encrypts the payload length.

2.7 Measuring Keystroke Timing over a Network

2.7.1 Methodology

In order to determine precise keystroke timing information over a real network,

we first developed simple client and server programs. When the server is run on a

machine, it waits for connections from the client. When the client is run from another

machine, it establishes a connection with the server socket. (By specifying a

preprocessor directive in the code, we can set the programs to use SSL or simple,

unencrypted sockets.) Then, whenever a key is pressed on the client, that key is sent to

the server, along with the time difference since the last key was pressed. When the server

receives one of these packets, it prints the key, the received time difference, and the time

difference since the last packet it received from the client. This allows us to observe the

timing difference between adjacent keystrokes, both on the client side, where the timing

can be measured without network delay, and on the server side, where the time difference

is a function of both the actual keystroke timing and the network delay.

In order to see how network traffic influenced our ability to observe keystroke

timing parameters, we performed this experiment several times, using different machines

9

and at different times of the day.

2.7.2 Data Analysis

After examining the time delays introduced by the network, it was apparent that

these delays would make SSH keystroke timing attacks very difficult. As Figure 3

demonstrates, the network latency can be relatively large in comparison to the inter-

keystroke timing. However, having a large latency will not thwart the keystroke timing

attack. If the latency is constant, it will merely add a constant offset to the packet times,

leaving the times between packets the same as the times between keystrokes.

The average interval between keystrokes when typing a password is around 208

ms. The average network latency for these packets is 1.8 ms. However, the latency

varies widely, having a standard deviation of approximately 48.1ms. By introducing a

somewhat random delay, the latency will change the packet arrival times and thus alter

the perceived inter-keystroke timing. Because keystroke timing attacks rely on precise

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Packet Number

Ti
m

e
(s

ec
on

ds
)

Keystroke Intervals

Network Latency

10

information about the inter-keystroke timing intervals, this variance makes performing

statistical analysis exceedingly difficult. This point is moot for a sniffer running on the

same network node as the client, but that situation is much less useful to an attacker and a

keystroke timing attack would likely yield no useful information.

2.8 Packet Sniffing Techniques

2.8.1 Methodology

In order to isolate the user’s password in a TCP stream, one can attempt to detect

the SSH signature of the UNIX su command and the following password. The su

command signature is presented in Figure 2. In order to test the feasibility of this attack,

we attempted to implement the scheme presented in Song using the packet sniffer

Ethereal. Ethereal is a generic packet sniffer which sets the Ethernet card to promiscuous

mode, allowing it to report all network traffic on the local subnet.

We began an SSH session between our local machine and one of the nodes in

UVA’s ‘blue.unix’ cluster. We then started Ethereal on the local machine, allowing us to

examine all SSH traffic in its encrypted format between the two machines.

Once we had the ability to observe the encrypted packets between our local

machine and the ‘blue.unix’ node, we then performed several su commands, observing

the traffic generated by each keystroke. Because the su command is executed in SSH’s

interactive mode, each key-press generates a packet to be sent to the ‘blue.unix’ host

node. Then the host acknowledges and echoes each keystroke back to the client, and

finally, the client acknowledges the character it received, printing the character on the

screen. However, passwords are never printed on the screen, so the packets containing

11

the characters of the password are sent to host, but are not echoed back to the client. The

packets which are not echoed correspond to the characters of the password.

We performed this experiment between several different client / server pairs,

using both the SSH-1 and SSH-2 protocols.

2.8.2 Data Analysis

By examining the SSH session packet logs for each scenario, we found that it is

often very difficult to determine when the su command and the following password

occur in the packet stream. In particular, the SSH session packet stream depends largely

on the implementation of the SSH server used in the connection. The su signatures

from various client / server pairs can be seen in Appendix A.

When connecting to ‘blue.unix,’ which uses the SSH Secure Shell v2.4.0 server,

there was a clear pattern to indicate the presence of an su command in the packet stream.

The ‘s,’ ‘u,’ and return characters are echoed by the server, and then the password prompt

is sent. Then the client sends an un-echoed stream of characters representing the

password. Someone searching the session for this pattern could very easily identify the

su command.

However, the machine ‘sgi-8,’ which uses the newer SSH Secure Shell v3.0.1, has

no clear pattern to indicate the presence of an su command. Each character sent in

immediate mode generates four packets. First the character is sent from client to server.

Then it is acknowledged by the server. Then it is echoed by the server. Finally, the

client acknowledges the echoed character. The problem in detecting as signature arises

because this sequence is the same whether the packet is echoed or not. When the actual

password characters are being typed, the server still sends dummy packets to take the

place of an echoed character. Furthermore, every packet containing data has the same

12

packet length. This prevents the identification of the su command signature. Likewise,

the data in Appendix A for ‘littlenerd.dorm,’ which uses OpenSSH v2.9, follows a

similar pattern.

We have determined that the implementation of the SSH server plays a very large

role in determining whether the su command has a detectable signature. The SSH

protocol allows the server to easily send dummy packets which obfuscate the pattern.

Whether or not the SSH server does this plays a large role in its security.

3. Evaluation

Our goal was to determine the efficacy of keystroke timing attacks on encrypted

SSH sessions. To this end, we performed several experiments to estimate the

vulnerability of SSH in the real world. The experiments we performed are very

representative of the methodology an attack would use. In addition, our experiments

were performed using modern, real-life equipment as opposed to laboratory conditions.

Our data takes into account the parameters of these real-world scenarios. For example,

Song’s research assumes an average Internet latency of 10 ms [SWT01]. We found that

the latency could likely be much larger, and that latency variance is more important than

average latency when performing keystroke timing attacks.

Even though we used real-world networks and equipment, the scenarios examined

in our experiments are a very small subset of all the scenarios in which SSH may be used.

For this reason, it would be helpful to perform our SSH keystroke analysis experiments

on a wider variety of networks, with many different clients and servers.

4. Conclusion

Our findings indicate that network latency on a network with any significant

13

traffic is enough to obscure any significant keystroke timing information. Furthermore,

the variation in SSH protocol implementations make it difficult to find the signatures of

specific commands typed in an interactive SSH session. It is particularly hard to do this

for some SSH servers, because these servers send dummy packets to fake an echo for

every character.

We are not claiming that SSH is a totally secure means for communication – it is

impossible to determine for certain that a protocol is entirely safe. In contrast, a protocol

can be demonstrated insecure by finding only one vulnerability. We are merely claiming

that the keystroke timing vulnerabilities found so far in the SSH protocol are mostly of

academic interest, and difficult to apply in the real world.

14

5. References

[FAQ01] SSH FAQ – Section 1. http://www.inf.bme.hu/~mulzs/sshfaq/ssh-faq-
1.html#ss1.8, 2001.

[OVER01] Van Dyke Software Homepage. http://www.vandyke.com/solutions/

ssh_overview/ssh_overview_history.html, 2001.

[SD01] Solar Designer and Dug Song. Passive Analysis of SSH

(Secure Shell) Traffic. Openwall advisory, OW-003.
http://security-archive.merton.ox.ac.uk/bugtraq-
200103/0258.html, March 2001.

[SSH01a] Timing Analysis is Not a Real-Life Threat to SSH Secure Shell Users.

http://www.ssh.com/products/ssh/timing_analysis.cfm, 2001.

[SWT01] Dawn Song, David Wagner, Xuqing Tian. Timing Analysis of Keystrokes

and Timing Attacks on SSH. In Proc. Of 10th USENIX Security
Symposium, August 2001.

[YKM+01] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, S. Lehtinen; “SSH

Transport Layer Protocol”, http://www.ietf.org/internet-drafts/draft-ietf-
secsh-transport-11.txt, 2001.

[YL01] T. Ylonen, S. Lehtinen; “SSH File Transfer Protocol”,

http://search.ietf.org/internet-drafts/draft-ietf-secsh-filexfer-02.txt, 2001.

[ZP00] Yin Zhang and Vern Paxson. Detecting Backdoors. In Proc. Of 9th

USENIX Security Symposium, August 2000.

15

Appendix A – su signatures

SSH-2: littlenerd.dorm to blue.unix

Time Source Destination Flags Length
3.098878 littlenerd.dorm blue.unix [PSH,ACK] 40
3.101986 blue.unix littlenerd.dorm [PSH,ACK] 40
3.102006 littlenerd.dorm blue.unix [ACK] 0
5.745584 littlenerd.dorm blue.unix [PSH,ACK] 40
5.748593 blue.unix littlenerd.dorm [PSH,ACK] 40
5.748619 littlenerd.dorm blue.unix [ACK] 0
7.311973 littlenerd.dorm blue.unix [PSH,ACK] 40
7.315193 blue.unix littlenerd.dorm [PSH,ACK] 40
7.315209 littlenerd.dorm blue.unix [ACK] 0
7.400233 blue.unix littlenerd.dorm [PSH,ACK] 48
7.400246 littlenerd.dorm blue.unix [ACK] 0
7.401544 blue.unix littlenerd.dorm [PSH,ACK] 48
7.401556 littlenerd.dorm blue.unix [ACK] 0
11.938379 littlenerd.dorm blue.unix [PSH,ACK] 40
12.111122 blue.unix littlenerd.dorm [ACK] 0
12.303909 littlenerd.dorm blue.unix [PSH,ACK] 40
12.321037 blue.unix littlenerd.dorm [ACK] 0
12.77418 littlenerd.dorm blue.unix [PSH,ACK] 40
12.950947 blue.unix littlenerd.dorm [ACK] 0
13.234006 littlenerd.dorm blue.unix [PSH,ACK] 40
13.371064 blue.unix littlenerd.dorm [ACK] 0
13.628537 littlenerd.dorm blue.unix [PSH,ACK] 40
13.780939 blue.unix littlenerd.dorm [ACK] 0
16.450322 littlenerd.dorm blue.unix [PSH,ACK] 40
16.460849 blue.unix littlenerd.dorm [PSH,ACK] 40
16.460864 littlenerd.dorm blue.unix [ACK] 0
16.495927 blue.unix littlenerd.dorm [PSH,ACK] 56
16.495938 littlenerd.dorm blue.unix [ACK] 0
16.498394 blue.unix littlenerd.dorm [PSH,ACK] 64
16.498405 littlenerd.dorm blue.unix [ACK] 0
16.499729 blue.unix littlenerd.dorm [PSH,ACK] 88
16.499741 littlenerd.dorm blue.unix [ACK] 0

16

SSH-2: littlenerd.dorm to sgi-8

Time Source Destination Flags Length
2.3337 littlenerd.dorm sgi-8 [PSH,ACK] 48
2.335359 sgi-8 littlenerd.dorm [ACK] 0
2.33744 sgi-8 littlenerd.dorm [PSH,ACK] 48
2.337454 littlenerd.dorm sgi-8 [ACK] 0
2.874851 littlenerd.dorm sgi-8 [PSH,ACK] 48
2.876256 sgi-8 littlenerd.dorm [ACK] 0
2.877779 sgi-8 littlenerd.dorm [PSH,ACK] 48
2.877793 littlenerd.dorm sgi-8 [ACK] 0
12.208276 littlenerd.dorm sgi-8 [PSH,ACK] 48
12.209923 sgi-8 littlenerd.dorm [ACK] 0
12.211717 sgi-8 littlenerd.dorm [PSH,ACK] 48
12.21173 littlenerd.dorm sgi-8 [ACK] 0
12.278076 sgi-8 littlenerd.dorm [PSH,ACK] 48
12.27809 littlenerd.dorm sgi-8 [ACK] 0
13.87318 littlenerd.dorm sgi-8 [PSH,ACK] 48
13.87456 sgi-8 littlenerd.dorm [ACK] 0
14.145405 littlenerd.dorm sgi-8 [PSH,ACK] 48
14.147019 sgi-8 littlenerd.dorm [ACK] 0
14.396384 littlenerd.dorm sgi-8 [PSH,ACK] 48
14.398676 sgi-8 littlenerd.dorm [ACK] 0
14.650641 littlenerd.dorm sgi-8 [PSH,ACK] 48
14.651963 sgi-8 littlenerd.dorm [ACK] 0
14.883592 littlenerd.dorm sgi-8 [PSH,ACK] 48
14.885102 sgi-8 littlenerd.dorm [ACK] 0
15.124763 littlenerd.dorm sgi-8 [PSH,ACK] 48
15.126104 sgi-8 littlenerd.dorm [ACK] 0
15.371296 littlenerd.dorm sgi-8 [PSH,ACK] 48
15.372559 sgi-8 littlenerd.dorm [ACK] 0
15.628701 littlenerd.dorm sgi-8 [PSH,ACK] 48
15.630228 sgi-8 littlenerd.dorm [ACK] 0

17

SSH-2: blue.unix to littlenerd.dorm

Time Source Destination Flags Length
1.752113 blue.unix littlenerd.dorm [PSH,ACK] 52
1.752405 littlenerd.dorm blue.unix [PSH,ACK] 52
1.773471 blue.unix littlenerd.dorm [ACK] 0
2.05564 blue.unix littlenerd.dorm [PSH,ACK] 52
2.055825 littlenerd.dorm blue.unix [PSH,ACK] 52
2.193668 blue.unix littlenerd.dorm [ACK] 0
2.279993 blue.unix littlenerd.dorm [PSH,ACK] 52
2.280624 littlenerd.dorm blue.unix [PSH,ACK] 52
2.286287 littlenerd.dorm blue.unix [PSH,ACK] 52
2.401127 blue.unix littlenerd.dorm [ACK] 0
4.090947 blue.unix littlenerd.dorm [PSH,ACK] 52
4.091171 littlenerd.dorm blue.unix [PSH,ACK] 52
4.272255 blue.unix littlenerd.dorm [ACK] 0
4.373262 blue.unix littlenerd.dorm [PSH,ACK] 52
4.373389 littlenerd.dorm blue.unix [PSH,ACK] 52
4.473753 blue.unix littlenerd.dorm [ACK] 0
4.923786 blue.unix littlenerd.dorm [PSH,ACK] 52
4.924057 littlenerd.dorm blue.unix [PSH,ACK] 52
5.103766 blue.unix littlenerd.dorm [ACK] 0
5.265581 blue.unix littlenerd.dorm [PSH,ACK] 52
5.265704 littlenerd.dorm blue.unix [PSH,ACK] 52
5.313938 blue.unix littlenerd.dorm [ACK] 0
5.49171 blue.unix littlenerd.dorm [PSH,ACK] 52
5.491922 littlenerd.dorm blue.unix [PSH,ACK] 52
5.52352 blue.unix littlenerd.dorm [ACK] 0
5.602852 blue.unix littlenerd.dorm [PSH,ACK] 52
5.602933 littlenerd.dorm blue.unix [PSH,ACK] 52
5.733511 blue.unix littlenerd.dorm [ACK] 0
5.826174 blue.unix littlenerd.dorm [PSH,ACK] 52
5.826256 littlenerd.dorm blue.unix [PSH,ACK] 52
5.943385 blue.unix littlenerd.dorm [ACK] 0
6.049279 blue.unix littlenerd.dorm [PSH,ACK] 52
6.049366 littlenerd.dorm blue.unix [PSH,ACK] 52
6.14648 blue.unix littlenerd.dorm [ACK] 0
6.222497 blue.unix littlenerd.dorm [PSH,ACK] 52
6.222585 littlenerd.dorm blue.unix [PSH,ACK] 52
6.353631 blue.unix littlenerd.dorm [ACK] 0
6.387635 blue.unix littlenerd.dorm [PSH,ACK] 52
6.387844 littlenerd.dorm blue.unix [PSH,ACK] 52
6.387932 littlenerd.dorm blue.unix [PSH,ACK] 52
6.563442 blue.unix littlenerd.dorm [ACK] 0
6.563494 littlenerd.dorm blue.unix [PSH,ACK] 152
6.773544 blue.unix littlenerd.dorm [ACK] 0

18

Appendix B – keystroke-timing client & server code

ktclient.cpp

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <termios.h>
#include <stdio.h>
#include <string.h>
#include <sys/timeb.h>

#define USE_SSL

#ifdef USE_SSL

#include <openssl/ssl.h>
#include <openssl/err.h>

#endif

int main(int argc, char **argv)
{
 int port;
 int result = 0;
 struct hostent *server_name = 0;

 if ((argc != 3) || ((server_name = gethostbyname(argv[1])) == 0)
 || (sscanf(argv[2], "%d", &port) != 1))
 {
 printf("Usage: %s <ip addr.> <port no.>\n", argv[0]);
 return 1;
 }

 int sd, accepted_sd;
 socklen_t client_size;
 struct sockaddr_in client_addr, server_addr;

#ifdef USE_SSL
 OpenSSL_add_all_algorithms();
 SSL_load_error_strings();
 SSL_library_init();

 fprintf(stderr, "Getting SSL context ... ");
 SSL_CTX *ssl_context = SSL_CTX_new(SSLv23_client_method());
 if (!ssl_context)
 {
 fprintf(stderr, "failed:\n\t%s.\n", ERR_error_string(ERR_get_error(), 0));
 return 1;
 }
 fprintf(stderr, "success.\n");

 fprintf(stderr, "Getting SSL ... ");
 SSL *ssl = SSL_new(ssl_context);
 if (!ssl)
 {
 fprintf(stderr, "failed:\n\t%s.\n", ERR_error_string(ERR_get_error(), 0));
 return 1;

19

 }
 fprintf(stderr, "success.\n");
#endif

 // create socket
 fprintf(stderr, "Creating socket ... ");
 sd = socket(AF_INET, SOCK_STREAM, 0);
 if (sd < 0)
 {
 fprintf(stderr, "failed.\n");
 return 1;
 }
 fprintf(stderr, "success.\n");

 // bind port
 fprintf(stderr, "Binding port %d ... ", port);

 server_addr.sin_family = server_name->h_addrtype;
 memcpy((char *) &server_addr.sin_addr.s_addr,
 server_name->h_addr_list[0], server_name->h_length);
 server_addr.sin_port = htons(port);

 client_addr.sin_family = AF_INET;
 client_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 client_addr.sin_port = htons(0);
 if (bind(sd, (struct sockaddr *) &client_addr,
 sizeof(client_addr)) < 0)
 {
 fprintf(stderr, "failed.\n");
 return 1;
 }
 fprintf(stderr, "success.\n");

 // connect
 fprintf(stderr, "Connecting ... ");
 result = connect(sd, (struct sockaddr *) &server_addr, sizeof(server_addr));
 if(result < 0)
 {
 fprintf(stderr, "failed.\n");
 return 1;
 }
 fprintf(stderr, "success.\n");

#ifdef USE_SSL
 fprintf(stderr, "Initializing SSL ... ");
 result = SSL_set_fd(ssl, sd);
 if (result != 1)
 fprintf(stderr, "failed:\n\t%s.\n", ERR_error_string(ERR_get_error(), 0));
 else
 fprintf(stderr, "success.\n");

 fprintf(stderr, "Awaiting secure connection ... ");
 result = SSL_connect(ssl);
 if (result != 1)
 fprintf(stderr, "failed:\n\t%s.\n", ERR_error_string(ERR_get_error(), 0));
 else
 fprintf(stderr, "success.\n");
#endif

 // enter raw mode so we can get each keystroke
 struct termios term_mode;
 tcgetattr(0, &term_mode);
 fprintf(stderr, "Entering raw mode ... ");
 term_mode.c_lflag &= ~ICANON;

20

 tcsetattr(0, 0, &term_mode);
 fprintf(stderr, "all set.\n");

 char ch;
 char buf[4097];
 int bytes_sent = 0;
 timeb t;
 double current_time, previous_time;

 ftime(&t);
 current_time = t.time + 0.001*t.millitm;

 do
 {
 previous_time = current_time;

 ch = getc(stdin);

 ftime(&t);
 current_time = t.time + 0.001*t.millitm;

 fprintf(stderr, " : %.3f\n", current_time - previous_time);
 sprintf(buf, "%c %.3f", ch, current_time - previous_time);

#ifdef USE_SSL
 bytes_sent = SSL_write(ssl, buf, strlen(buf));
#else
 bytes_sent = send(sd, (void *)(buf), strlen(buf), 0);
#endif
 if (bytes_sent < 0)
 fprintf(stderr, "Error.\n");

 } while (1);

#ifdef USE_SSL
 SSL_free(ssl);
#endif

 return 0;
}

21

ktserver.cpp

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <sys/timeb.h>

#define USE_SSL

#ifdef USE_SSL

#include <openssl/ssl.h>
#include <openssl/err.h>

#endif

#define STDOUT stdout
#define ERROUT stderr

int main(int argc, char **argv)
{
 int port;
 int result = 0;

 if ((argc != 2) || (sscanf(argv[1], "%d", &port) != 1))
 {
 fprintf(ERROUT, "Usage: %s <port no.>\n", argv[0]);
 return 1;
 }

 int sd, accepted_sd;
 socklen_t client_size;
 struct sockaddr_in client_addr, server_addr;

 setbuf(STDOUT, 0);
 setbuf(ERROUT, 0);

#ifdef USE_SSL
 OpenSSL_add_all_algorithms();
 SSL_load_error_strings();
 SSL_library_init();

 SSL_CTX *ssl_context = SSL_CTX_new(SSLv23_server_method());
 if (!ssl_context)
 {
 fprintf(ERROUT, "Getting SSL context failed:\n\t%s.\n",
 ERR_error_string(ERR_get_error(), 0));
 return 1;
 }

 result = SSL_CTX_use_certificate_file(ssl_context, "server-req.pem",
 SSL_FILETYPE_PEM);
 if (result != 1)
 {
 fprintf(ERROUT, "Initializing certificate failed:\n\t%s.\n",
 ERR_error_string(ERR_get_error(), 0));
 return 1;
 }

 result = SSL_CTX_use_PrivateKey_file(ssl_context, "server-key.pem",
 SSL_FILETYPE_PEM);

22

 if (result != 1)
 {
 fprintf(ERROUT, "Initializing key failed:\n\t%s.\n",
 ERR_error_string(ERR_get_error(), 0));
 return 1;
 }

 SSL *ssl = 0;
#endif

 // create socket
 sd = socket(AF_INET, SOCK_STREAM, 0);
 if (sd < 0)
 {
 fprintf(ERROUT, "Creating socket failed.\n");
 return 1;
 }

 // bind port
 server_addr.sin_family = AF_INET;
 server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 server_addr.sin_port = htons(port);
 if (bind(sd, (struct sockaddr *) &server_addr,
 sizeof(server_addr)) < 0)
 {
 fprintf(ERROUT, "Binding port failed.\n");
 return 1;
 }

 // listen
 result = listen(sd, 5);
 if (result != 0)
 {
 fprintf(ERROUT, "Starting to listen failed: %d.\n", result);
 return 1;
 }

 do
 {

 fprintf(STDOUT, "--\n");
 client_size = sizeof(client_addr);
 accepted_sd = accept(sd, (struct sockaddr *) &client_addr,
 &client_size);
 if (accepted_sd < 0)
 {
 fprintf(ERROUT, "Waiting for connection failed.\n");
 return 1;
 }

#ifdef USE_SSL
 ssl = SSL_new(ssl_context);
 if (!ssl)
 {
 fprintf(ERROUT, "Initializing SSL failed:\n\t%s.\n",
ERR_error_string(ERR_get_error(), 0));
 return 1;
 }

 result = SSL_set_fd(ssl, accepted_sd);
 if (result != 1)
 fprintf(ERROUT, "Securing connection failed:\n\t%s.\n",
ERR_error_string(ERR_get_error(), 0));

23

 result = SSL_accept(ssl);
 if (result != 1)
 fprintf(ERROUT, "Accepting secure connection failed:\n\t%s.\n",
ERR_error_string(ERR_get_error(), 0));
#endif

 unsigned char *client_ip = (unsigned char *)&client_addr.sin_addr.s_addr;
 fprintf(STDOUT, "Connected to %d.%d.%d.%d.\n", client_ip[0], client_ip[1],
client_ip[2], client_ip[3]);

 char buf[4097];
 int bytes_read = 0;
 timeb t;
 double current_time, previous_time;

 ftime(&t);
 current_time = t.time + 0.001*t.millitm;

 do
 {
 previous_time = current_time;

#ifdef USE_SSL
 bytes_read = SSL_read(ssl, buf, sizeof(buf) - 1);
#else
 bytes_read = recv(accepted_sd, (void *)buf, sizeof(buf) - 1, 0);
#endif
 ftime(&t);
 current_time = t.time + 0.001*t.millitm;

 if (bytes_read > 0)
 {
 buf[bytes_read] = 0;

 if (buf[0] == '\n')
 buf[0] = ' ';

 fprintf(STDOUT, "%s : %.3f\n", buf,
 current_time - previous_time);
 }

 } while (bytes_read > 0);

 if (bytes_read != 0)
 fprintf(ERROUT, "Communication error.\n");

#ifdef USE_SSL
 SSL_free(ssl);
#endif

 } while (1);

 return 1;
}

