# **CS6501: Great Works in Computer Science**

Presented by Longze Chen March 19th 2013

### **Communication Theory of Secrecy Systems (C. E. Shannon, 1949)**

A Mathematical Theory of Cryptography (C. E. Shannon, 1946)

Claude Elwood Shannon (1916 - 2001)

The Father of Information Theory



### Boolean Theory

- A Symbolic Analysis of Relay and Switching Circuits (1937)
- An Algebra for Theoretical Genetics (1940)

### Cryptography

- A Mathematical Theory of Cryptography (1946)
- Communication Theory of Secrecy Systems (1949)

### Information Thoery

• A Mathematical Theory of Communication (1948)

## **Secrecy Systems**

- Schematic of A General Secrecy System
  - $\circ$  E = f(M, K)
  - $\circ$   $E = T_i M$



Fig. 1. Schematic of a general secrecy system

- Definition of Secrecy Systems
  - $\circ$  A Secrecy System is a family of uniquely reversible transformations  $T_i$  of a set of possible messages into a set of cryptograms, the transformation  $T_i$  having an associated probability  $p_i$ .
  - o A set of transformations with associated probabilities
  - o Domain and Range
  - o More on the definition

- Threat Model
  - The enemy knows the system being used. (Shannon' Maxim)
    - Objection
- Deciphering vs Cryptanalysis
- Representation of Secrecy Systems
  - Line diagram



Fig. 2. Line drawings for simple systems

Closed system

### **Examples of Secrecy Systems**

- Substitution
  - o Simple Substitution
    - Key
    - wklv phvvdjh lv qrw wrr kdug wr euhdn
  - Vigenère
    - Degree
    - $= e_i = m_i + k_i \pmod{26}$
- Transposition
  - o Columnar Transposition
- Combination
- One-time Pads
  - o Unbreakable if used correctly / Information-theoretically secure
    - Perfect Secrecy
  - o Problems
    - True randomness
    - Key size
    - Synchronization
  - o Vernam Cipher

# **Characteristics of a Good Cryptosystem**

- Shannon's Criteria
  - Amount of Secrecy
    - Perfect
    - Not Perfect but never yield unique solution
    - Not Perfect and yield unique solution, but the amount of effort varies
  - o Size of Key
  - o Complexity of Enciphering and Deciphering Operations
  - o Propagation of Errors
  - Expansion of Messages
- Are these criteria still reasonable?
- Anything else?

# **Mathematical Structure of Secrecy Systems**

• Secrecy System

• Combination

o Weighted Sum

| 0            | Product       |  |
|--------------|---------------|--|
|              |               |  |
| • Properties |               |  |
| 0            | Associative?  |  |
| 0            | Distributive? |  |
| 0            | Commutative?  |  |
| 0            | Endomorphic?  |  |
|              |               |  |
|              |               |  |
|              |               |  |

# **Pure Cipher**

| Homogenenity                  |                                                                                                                                                                      |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| o Gro                         | pup property                                                                                                                                                         |  |
| <ul> <li>Unrefined</li> </ul> | Defination                                                                                                                                                           |  |
| $\circ$ $T$                   | forms a group                                                                                                                                                        |  |
| o End                         | domorphic                                                                                                                                                            |  |
| Proper De                     | finination                                                                                                                                                           |  |
|                               | sipher $T$ is pure if for every $T_i$ , $T_j$ , $T_k$ there is a $T_s$ such that $T_iT_j^{-1}T_k = T_s$ devery key is equally likely. Otherwise the cipher is mixed. |  |
| • Property                    |                                                                                                                                                                      |  |
| o The                         | eorem 1                                                                                                                                                              |  |
| o The                         | eorem 2                                                                                                                                                              |  |
| o The                         | eorem 3                                                                                                                                                              |  |
| o The                         | eorem 4                                                                                                                                                              |  |

## **Perfect Secrecy**

#### Questions:

- How immune a system is when the cryptanalyst has unlimited time and manpower available for the analysis of cryptograms?
- Natural Definition of Perfect Secrecy
  - It is natural to define perfect secrecy by the condition that, for all E the a posteriori
    probabilities are equal to the a priori probabilities independent of the value of
    these.

#### • Theorem 6

 $\circ$  A necessary and sufficient condition for perfect secrecy is that  $P_M(E) = P(E)$  for all M and E. That is,  $P_M(E)$  must be independent of M.

• Important relationship between keys and messages

# **General Idea of Ideal Secrecy**

- Problem with Perfect Secrecy
  - o Key size
- Entropy and Equivocation
  - $\circ$  H(M) and H(K)
  - $\circ$   $H_E(M)$  and  $H_E(K)$
- Properties of Equivocation
- Definition of Ideal Secrecy
  - Ideal secrecy
    - $H_E(M)$  and  $H_E(K)$  do not approach zero as  $N \to \infty$ .
  - Strongly ideal secrecy
    - $H_E(K)$  remains constant at  $H_E(M)$ .