
2
The Mythical Man-Month





2
The Mythical Man-Month

Good cooking fakes time. If you are made to wait, it is to
serve you better, and to please you.

MENU OF RESTAURANT ANTOINE. NEW ORLEANS

13



14 The Mythical Man-Month

More software projects have gone awry for lack of calendar time
than for all other causes combined. Why is this cause of disaster
so common?

First, our techniques of estimating are poorly developed. More
seriously, they reflect an unvoiced assumption which is quite un-
true, i.e., that all will go well.

Second, our estimating techniques fallaciously confuse effort
with progress, hiding the assumption that men and months are
interchangeable.

Third, because we are uncertain of our estimates, software
managers often lack the courteous stubbornness of Antoine's chef.

Fourth, schedule progress is poorly monitored. Techniques
proven and routine in other engineering disciplines are considered
radical innovations in software engineering.

Fifth, when schedule slippage is recognized, the natural (and
traditional) response is to add manpower. Like dousing a fire with
gasoline, this makes matters worse, much worse. More fire re-
quires more gasoline, and thus begins a regenerative cycle which
ends in disaster.

Schedule monitoring will be the subject of a separate essay.
Let us consider other aspects of the problem in more detail.

Optimism

All programmers are optimists. Perhaps this modern sorcery espe-
cially attracts those who believe in happy endings and fairy god-
mothers. Perhaps the hundreds of nitty frustrations drive away all
but those who habitually focus on the end goal. Perhaps it is
merely that computers are young, programmers are younger, and
the young are always optimists. But however the selection process
works, the result is indisputable: "This time it will surely run," or
"I just found the last bug."

So the first false assumption that underlies the scheduling of
systems programming is that all will go well, i.e., that each task will
hike only as long as it "ought" to take.



Optimism 15

The pervasiveness of optimism among programmers deserves
more than a flip analysis. Dorothy Sayers, in her excellent book,
The Mind of the Maker, divides creative activity into three stages:
the idea, the implementation, and the interaction. A book, then,
or a computer, or a program comes into existence first as an ideal
construct, built outside time and space, but complete in the mind
of the author. It is realized in time and space, by pen, ink, and
paper, or by wire, silicon, and ferrite. The creation is complete
when someone reads the book, uses the computer, or runs the
program, thereby interacting with the mind of the maker.

This description, which Miss Sayers uses to illuminate not
only human creative activity but also the Christian doctrine of the
Trinity, will help us in our present task. For the human makers of
things, the incompletenesses and inconsistencies of our ideas
become clear only during implementation. Thus it is that writing,
experimentation, "working out" are essential disciplines for the
theoretician.

In many creative activities the medium of execution is intract-
able. Lumber splits; paints smear; electrical circuits ring. These
physical limitations of the medium constrain the ideas that may
be expressed, and they also create unexpected difficulties in the
implementation.

Implementation, then, takes time and sweat both because of
the physical media and because of the inadequacies of the under-
lying ideas. We tend to blame the physical media for most of our
implementation difficulties; for the media are not "ours" in the
way the ideas are, and our pride colors our judgment.

Computer programming, however, creates with an exceed-
ingly tractable medium. The programmer builds from pure
thought-stuff: concepts and very flexible representations thereof.
Because the medium is tractable, we expect few difficulties in
implementation; hence our pervasive optimism. Because our ideas
are faulty, we have bugs; hence our optimism is unjustified.

In a single task, the assumption that all will go well has a
probabilistic effect on the schedule. It might indeed go as



16 The Mythical Man-Month

for there is a probability distribution for the delay that will be
encountered, and "no delay" has a finite probability. A large pro-
gramming effort, however, consists of many tasks, some chained
end-to-end. The probability that each will go well becomes van-
ishingly small.

The'Man-Month

The second fallacious thought mode is expressed in the very unit
of effort used in estimating and scheduling: the man-month. Cost
does indeed vary as the product of the number of men and the
number of months. Progress does not. Hence the man-month as a unit
for measuring the size of a job is a dangerous and deceptive myth. It
implies that men and months are interchangeable.

Men and months are interchangeable commodities only when
a task can be partitioned among manyworkers with no communica-
tion among them (Fig. 2.1). This is true of reaping wheat or picking
cotton; it is not even approximately true of systems programming.

Men

Fig. 2.1 Time versus number of workers—perfectly partitionable task



The Man-Month 17

When a task cannot be partitioned because of sequential con-
straints, the application of more effort has no effect on the sched-
ule (Fig. 2.2). The bearing of a child takes nine months, no matter
how many women are assigned. Many software tasks have this
characteristic because of the sequential nature of debugging.

Fig. 2.2 Time versus number of workers—unpartitionable task

In tasks that can be partitioned but which require communica-
tion among the subtasks, the effort of communication must be
added to the amount of work to be done. Therefore the best that
can be done is somewhat poorer than an even trade of men for
months (Fig. 2.3).



18 The Mythical Man-Month

Men

Fig. 2.3 Time versus number of workers—partitionable task requiring
communication

The added burden of communication is made up of two parts,
training and intercommunication. Each worker must be trained in
the technology, the goals of the effort, the overall strategy, and the
plan of work. This training cannot be partitioned, so this part of
the added effort varies linearly with the number of workers.1

Intercommunication is worse. If each part of the task must be
separately coordinated with each other part/ the effort increases as
n(n-I)/2. Three workers require three times as much pairwise
intercommunication as two; four require six times as much as two.
If, moreover, there need to be conferences among three, four, etc.,
workers to resolve things jointly, matters get worse yet. The added
effort of communicating may fully counteract the division of the
original task and bring us to the situation of Fig. 2.4.



Systems Test 19

Men

Fig. 2.4 Time versus number of workers—task with complex interrela-
tionships

Since software construction is inherently a systems effort—an
exercise in complex interrelationships—communication effort is
great, and it quickly dominates the decrease in individual task time
brought about by partitioning. Adding more men then lengthens,
not shortens, the schedule.

Systems Test

No parts of the schedule are so thoroughly affected by sequential
constraints as component debugging and system test. Further-
more, the time required depends on the number and subtlety of
the errors encountered. Theoretically this number should be zero.
Because of optimism, we usually expect the number of bugs to be



20 The Mythical Man-Month

smaller than it turns out to be. Therefore testing is usually the
most mis-scheduled part of programming.

For some years I have been successfully using the following
rule of thumb for scheduling a software task:

l/3 planning
l/6 coding
l/4 component test and early system test
l/4 system test, all components in hand.

This differs from conventional scheduling in several important
ways:

1. The fraction devoted to planning is larger than normal. Even
so, it is barely enough to produce a detailed and solid specifi-
cation, and not enough to include research or exploration of
totally new techniques.

2. The half of the schedule devoted to debugging of completed
code is much larger than normal.

3. The part that is easy to estimate, i.e., coding, is given only
one-sixth of the schedule.

In examining conventionally scheduled projects, I have found
that few allowed one-half of the projected schedule for testing,
but that most did indeed spend half of the actual schedule for that
purpose. Many of these were on schedule until and except in
system testing.2

Failure to allow enough time for system test, in particular, is
peculiarly disastrous. Since the delay comes at the end of the
schedule, no one is aware of schedule trouble until almost the
delivery date. Bad news, late and without warning, is unsettling
to customers and to managers.

Furthermore, delay at this point has unusually severe finan-
cial, as well as psychological, repercussions. The project is fully
staffed, and cost-per-day is maximum. More seriously, the soft-
ware is to support other business effort (shipping of computers,
operation of new facilities, etc.) and the secondary costs of delay-
ing these are very high, for it is almost time for software shipment.



Regenerative Schedule Disaster 21

Indeed, these secondary costs may far outweigh all others. It is
therefore very important to allow enough system test time in the
original schedule.

Gutless Estimating

Observe that for the programmer, as for the chef, the urgency of
the patron may govern the scheduled completion of the task, but
it cannot govern the actual completion. An omelette, promised in
two minutes, may appear to be progressing nicely. But when it has
not set in two minutes, the customer has two choices— wait or eat
it raw. Software customers have had the same choices.

The cook has another choice; he can turn up the heat. The
result is often an omelette nothing can save— burned in one part,
raw in another.

Now I do not think software managers have less inherent
courage and firmness than chefs, nor than other engineering man-
agers. But false scheduling to match the patron's desired date is
much more common in our discipline than elsewhere in engineer-
ing. It is very difficult to make a vigorous, plausible, and job-
risking defense of an estimate that is derived by no quantitative
method, supported by little data, and certified chiefly by the
hunches of the managers.

Clearly two solutions are needed. We need to develop and
publicize productivity figures, bug-incidence figures, estimating
rules, and so on. The whole prof ession can only profit from sharing
such data.

Until estimating is on a sounder basis, individual managers
will need to stiffen their backbones and defend their estimates
with the assurance that their poor hunches are better than wish-
derived estimates.

Regenerative Schedule Disaster
What does one do when an essential software project is behind
schedule? Add manpower, naturally. As Figs. 2.1 through 2.4 sug-
gest, this may or may not help.



22 The Mythical Man-Month

Let us consider an example.3 Suppose a task is estimated at 12
man-months and assigned to three men for four months, and that
there are measurable mileposts A, B, C, D, which are scheduled to
fall at the end of each month (Fig. 2.5).

Now suppose the first milepost is not reached until two
months have elapsed (Fig. 2.6). What are the alternatives facing
the manager?

1. Assume that the task must be done on time. Assume that only
the first part of the task was misestimated, so Fig. 2.6 tells the
story accurately. Then 9 man-months of effort remain, and
two months, so 4V£ men will be needed. Add 2 men to the 3
assigned.

2. Assume that the task must be done on time. Assume that the
whole estimate was uniformly low, so that Fig. 2.7 really
describes the situation. Then 18 man-months of effort remain,
and two months, so 9 men will be needed. Add 6 men to the
3 assigned.

Figure 2.5



Regenerative Schedule Disaster 23

Figure 2,6

Figure 2.7



24 The Mythical Man-Month

3. Reschedule. I like the advice given by P. Fagg, an experienced
hardware engineer, "Take no small slips." That is, allow
enough time in the new schedule to ensure that the work can
be carefully and thoroughly done, and that rescheduling will
not have to be done again.

4. Trim the task. In practice this tends to happen anyway, once
the team observes schedule slippage. Where the secondary
costs of delay are very high, this is the only feasible action.
The manager's only alternatives are to trim it formally and
carefully, to reschedule, or to watch the task get silently
trimmed by hasty design and incomplete testing.

In the first two cases, insisting that the unaltered task be
completed in four months is disastrous. Consider the regenerative
effects, for example, for the first alternative (Fig. 2.8). The two new
men, however competent and however quickly recruited, will re-
quire training in the task by one of the experienced men. If this
takes a month, 3 man-months will have been devoted to work not in the
original estimate. Furthermore, the task, originally partitioned three
ways, must be repartitioned into five parts; hence some work
already done will be lost, and system testing must be lengthened.
So at the end of the third month, substantially more than 7 man-
months of effort remain, and 5 trained people and one month are
available. As Fig. 2.8 suggests, the product is just as late as if no
one had been added (Fig. 2.6).

To hope to get done in four months, considering only training
time and not repartitioning and extra systems test, would require
adding 4 men, not 2, at the end of the second month. To cover
repartitioning and system test effects, one would have to add still
other men. Now, however, one has at least a 7-man team, not a
3-man one; thus such aspects as team organization and task divi-
sion are different in kind, not merely in degree.

Notice that by the end of the third month things look very
black. The March 1 milestone has not been reached in spite of all



Regenerative Schedule Disaster 25

the managerial effort. The temptation is very strong to repeat the
cycle, adding yet more manpower. Therein lies madness.

The foregoing assumed that only the first milestone was
misestimated. If on March I one makes the conservative assump-
tion that the whole schedule was optimistic, as Fig. 2.7 depicts, one
wants to add 6 men just to the original task. Calculation of the
training, repartitioning, system testing effects is left as an exercise
for the reader. Without a doubt, the regenerative disaster will
yield a poorer product, later, than would rescheduling with the
original three men, unaugmented.

Oversimplifying outrageously, we state Brooks's Law:

Adding manpower to a late software project makes it later.

This then is the demythologizing of the man-month. The
number of months of a project depends upon its sequential con-

Figure 2.8



26 The Mythical Man-Month

straints. The maximum number of men depends upon the number
of independent subtasks. From these two quantities one can derive
schedules using fewer men and more months. (The only risk is
product obsolescence.) One cannot, however, get workable sched-
ules using more men and fewer months. More software projects
have gone awry for lack of calendar time than for all other causes
combined.


