
1

2 Mar 1999; Session 12 CS655

No
 off ice
 hours
 today...

2 Mar 1999; Session 12 CS655

• Read Unit 6 papers (in file drawer) by Thurs, 11th:
– Cardelli 2, Milner, Ponder, Day

• Basic type systems

• Write (due Friday --05 Mar, 5PM):
– Haskell and ML handle type inferencing and polymorphism

differently. Haskell maps to abstract types while ML maps
to concrete types. Explain what this means and address
which method, if either (feel free to suggest alternatives), is
better.

• Submit -- due (this) Thursday, 04 March:
– Your project plan: a paragraph describing your group,

and its project, as preapproved by me.
• Send something TODAY if you have not already

Tues, 02 March: Assignment

2

2 Mar 1999; Session 12 CS655

Today’s Topics

• λ calculus

• Denotational semantics

2 Mar 1999; Session 12 CS655

Project
• Objective: to learn one or more new languages through analysis

and use, in order to broaden your view and understanding of
programming languages concepts and issues.

• Assignment:
– Identify and receive approval for a project in which you learn one or more

new programming languages or make a significant contribution to an
existing (or evolving) language.

– You may work on a default project (see next slide)

• You may work in groups of up to three people. OK to work alone.

• Final project proposal must be to me by Tuesday, 9 March, 5PM.

• No member of a group may have previously known any of the
languages analyzed.

3

2 Mar 1999; Session 12 CS655

Preferred Project
• Influence the design of an evolving language.

– You suggest the way you’ ll influence it.

– You accomplish the task of convincing the language designer(s) to at least
consider your idea(s) and respond to it (them).

2 Mar 1999; Session 12 CS655

Default Project
• Languages: CLU, Icon, APL, Cecil, Sather, Eiffel, Self, OCAML

– choose one

• Sample questions to answer:
– What are the most notable features of your language? Show us they work.

– What are the influences on your language?
• What is its history in general?

• How were the features from (1) influenced?

– What problem domains is your language good for? Bad for? Why?
• Support arguments with code.

– What were the language designer’s goals?

– How well does your language meet the language designer’s goals?

– What would you do to improve the language?
• support with examples.

