
1

+’s to Wegner ’s Milestones
• Languages

– Smalltalk - first truly object-oriented language

– Gypsy - demos automated verification is feasible in parallel
language

– CLU - first to demo utili ty of data abstraction

– FP - functional languages come into being.

– CSP - clarified many communication/ synchronization issues in
parallel langs

– Ada - whether of not you like it, it's a significant accomplishment

– Logo - computing for children is possible

– Mesa - static checking isn't mandatory in parallel languages

– SETL - first very high level language

– Prolog - demonstrates feasibilit y of logic programming

+’s to Wegner ’s Milestones
• More Languages

– C++ - virtual functions & static type checking

– Java - It is possible to improve an existing language???

– Visual Languages???

– Unity?

– Perl

– ML

– Why not C???

2

+’s to Wegner ’s Milestones
• Concepts

– denotational semantics
– specification languages
– verification successes
– object-oriented programming,
– (class instances and inheritance issues)
– logic programming
– functional programming
– data flow
– parallelism (synch and comm)
– nondeterminacy
– models of computation

+’s to Wegner ’s Milestones
• More Concepts

– Exception handling
– Real-time languages
– Polymorphism
– Ada parameter passing
– Managing reference variables
– Expanding notion of what a PL is
– Visual languages - closures
– Simulation - subtyping
– Operating systems
– Databases
– Language environments
– Type inferencing

3

+’s to Wegner ’s Milestones
• Implementation Ideas

– syntax directed compil ing
– parser/lexical generators
– programming environments
– syntax directed editors

• Architectural Influences
– micro-computers (VLSI and its impact on language design)
– interactive programming capabiliti es
– language-based architectures (Lillith, LISP machines,

Transputer)
– parallel architectures
– Virtual memory
– RISC; RISC/CISC

Dijkstra: Threats to Computing Science

“Not getting lost in the complexities of our own making
and preferably reaching that goal by learning how to
avoid the introduction of those complexities in the first
place. That is the key challenge computing science has
to meet.”

- p.3
“…the suggestion that the proposed style of composing

iteratively would save time is an obvious and blatant
lie.”

- p.7

4

Dijkstra: Threats to Computing Science

“ It is not only the performing artist who is, in a very real
sense, shaped by the instrument he plays; this holds as
well for the Reasoning Man…”

- p. 8
“The quest for the ideal programming language and ideal

man-machine interface that would make the software
crisis melt like snow in the sun had -- and still has! --
all the characteristics of the search for the Elixir and
the Stone.”

- p. 10

Dijkstra: Threats to Computing Science

“…All we needed was ‘ intell igence ampli fication’…they
have probably discovered it would ampli fy stupidity as
well…”

- p.12

“…the public…tends to confuse…the composing of a
symphony with the writing of its score.”

5

Dijkstra: Threats to Computing Science

“…the programmable computer is no more and no less
than a handy device for the implementation of any
thinkable mechanism. As such it poses on us the
burden to demonstrate which mechanisms we can think
of sufficiently clearly. It implies the challenge of
blending engineering with the techniques of scientific
thought; this challenge is exciting and we are ready for
it.”

