Principles

990128; P.F. Reynolds CS655

MacL ennan’s Principles

e Abstraction

— Avoid requiring something to be stated more than
once fador out the reaurring pattern.

— Subprograms, user defined types, inheritance
e Automation

— Automate mechanicd, tedious, or error-prone
adivities.
— Garbage coll edion; looping structures

990128; P.F. Reynolds CS655

MacL ennan’s Principles (2)
» Defensein Depth

— Have aseries of defenses so that if an error isn't caught
by ore, it will probably be caight by ancther.
— Array bound leing part of type; definite loops.
* Information Hiding

— The language shoud permit moduesto be designed so
that (1) the user hasall of the information needed to use
the modue arredly, and nahing more; and (2) the
implementor has al of the information reeded to
implement the modu e corredly, and nahing more.

— Modues, padages, objeds

990128; P.F. Reynolds CS655 3

MacL ennan’s Principles (3)
» Labeling

— Avoid arbitrary sequences more than afew itemslong
Do na require the user to know the asolute paosition o
aniteminalist. Instead, associate ameaningful 1abel
with ead item and all ow the itemsto occur in any order.

— Case statement, pasition-independent parameters.
» Localized Cost

— Users shoud ony pay for what they use; avoid
distributed costs.

— Violations: Algad 60 loops, dynamic type binding.

990128; P.F. Reynolds CS655 4

MacL ennan’s Principles (4)

* Manifest Interface

— All interfaces shoud be gparent (manifest) in the
syntax.

— Modde specifications; function prototypes

» Orthogonality

— Independent functions shoud be wntrolled by
independent medhanisms.

— Algol68 types; Ada parameter passing

990128; P.F. Reynolds CS655

MacL ennan’s Principles (5)

» Portability

— Avoid fedures or fadlitiesthat are dependent ona
particular macdhine or asmall classof madines.

— Ada prohibition of aliasing, C/Alga601/0

e Preservation of Information

— The language shoud all ow the representation of
information that the user might know and that the
compiler might need.

— Definite loopng structures

990128; P.F. Reynolds CS655

MacL ennan’s Principles (6)

* Regularity

— Regular rules, without exception, are eaier to lean, use
describe and implement.

— Violations: stringsin most langs; Pascd functions.
o Security

— No program that violates the definition d the language,
or its own intended structure, shoud escgpe detedion.

— Strong typing in Algal 60, Pascd, Ada, C++

990128; P.F. Reynolds CS655 7

MacL ennan’s Principles (7)

o Simplicity

— A language shoud be & smple a possible. There
shoud be aminimum number of concepts, with simple
rules for their combination.

— Pascd; Ada name ejuivalence

e Structure

— The static structure of the program shoud correspondin
asimple way to the dynamic structure of the
correspondng computations.

— Single entry / single «it; violation: Pascd’ s upside-
down procedures first form.

990128; P.F. Reynolds CS655 8

MacL ennan’s Principles (8)

» Syntactic Consistency

— Similar things sould look similar; different things
different.

— Violations:. ,/; in Algal68; blocks vs compound
statements; Adaprivate/ limited private

» Zero-One-Infinity
— The only reasonable numbers are zeo, one, and infinity.
— Array dimensions; identifier sizes; function resting

990128; P.F. Reynolds CS655 9

More Principles (Ghezz & Jazayeri)
» Efficiency
— trandation & exeaution
» Readability
o Writability
* Reliability

— rigorous mantics; clea distinction between static
and dyramic checks; modularity

990128; P.F. Reynolds CS655 10

MorePrinciples

Predictability

L ear nability

M aintainability
Verifiability

??7? Mustitendin “ility” ?

990128; P.F. Reynolds CS655 11

More Principles (Yemini & Berry)

 Widehorizon:

— Whenever the semantics of a construct, C, in a
language for concurrent programming implies the
delay of aprocess (task) executingin C, C shoud be
able to have other alternatives, and all such
constructs sould be aleto serve & dternativesto
each other.

— Not satisfied by semaphores, monitor calls or Ada
select statement.

990128; P.F. Reynolds CS655 12

More Principles (Yemini & Berry) (2)

» Closureunder binding:

— For every concurrent program, there exists a
sequential, posshbly nontdeterministic, program with
an equivalent semantics.

— No unitask program in Ada can simulate:
dedare
task tlis sl.el() endtl,
task t2is s2.€2() endtz;

begin end;

-- sl and s2 are called in arbitrary order.

990128; P.F. Reynolds CS655 13

What' sthisviolate?
COMMON g, b, lab

3 WRITE(6,5)

5 FORMAT(. .)
ASSIGN 3TO lab
CALL sub2
END

SUBROUTINE sub2
COMMON, d, lab

GOTO lab
3i=10

RETURN

END

990128; P.F. Reynolds CS655 14

What' sthisviolate?

10i=0
cal doThing(...1 ...)
=i+l
IFi<=nTHEN GOTO 10

What' sthis violate?
i =10;
s=10;

s="thisisastring’;
IFi!=10THEN someFunc(i);
s=3.14159

IEs=pi THEN . . .

990128; P.F. Reynolds CS655 16

What' sthisviolate?

val = -7
a= val >> 2
val = 15

a = val << 18

990128; P.F. Reynolds CS655

17

What' sthisviolate?

GOTO i-- branch to i-th statement
<statement 1>
<statement 2>
<statement i>

<statement n>

990128; P.F. Reynolds CS655

18

What' sthisviolate?

If the type of tha created object is an array type or a type with discriminants, then the created

object is always constrained. If the allocator includes a subtype indication, the created object is

constrained either by the subtype or by the default discriminant values. If the allocator includes a

) qualified expression, the created object is constrained by the bounds or discriminants of the initial
value. For other types, the subtype of the created object is the subtype defined by the subtype
indication of the access type definition.

For the evaluation of an allocator, the elabaration of the subtype indication or the svaluation of the
qualified expression is performed first. The new object is then created. Initializations are then per-
formed as for a declared object (see 3.2.1); the initialization is considered explicit in the case of a
_ gualified expression; any initializations are implicit in the case of a subtype indication. Finally, an
! access value that designates the created object is returned.

990128; P.F. Reynolds CS655 19

What' sthisviolate?

DIMENSION a(20)
CALL subr(a)

END

SUBROUTINE subr (n)
DIMENSION n(25);
IFn(22) = ...

END

990128; P.F. Reynolds CS655 20

10

What' sthisviolate?

ii=1;
WHILEi <nDO
BEGIN
WRITE (exp(i));
=i+l
END;

ii=1;
REPEAT
WRITE (exp(i));
=i+l
UNTILi=n

FORi:=1TOn-1DO
WRITE (exp(i))

990128; P.F. Reynolds CS655 21

What' sthisviolate?

FOR (; curr '= NULL ; curr = temp)
{

temp = curr->next;
FREE ((char *) curr);

}

990128; P.F. Reynolds CS655 22

11

What' sthisviolate?

IE(1=0)...
IF(1==0)..
990128; P.F. Reynolds CS655

What' sthisviolate?

10 IF(n>0) THEN GOTO 20
n=0
GOTO 22

20 IF (n>0) THEN GOTO 30
IF (m>0) Then GOTO 25
n = infinity
GOTO 40

25 n=m/2

30 IF(n< 1000 THEN GOTO 40
n=n-[1729)
GOTO 10

40 CONTINUE

990128; P.F. Reynolds CS655

What' sthisviolate?
GOTO 10

ASSIGN 20to n
GOTOn, (10,20,30,40) -- assigned GOTO

n=3
GOTO (10,20,30,40), n -- computed GOTO

990128; P.F. Reynolds CS655

25

What' sthisviolate?

WHILE inch=""'DO
READ ((infil e, inch);

ii=1;
WHILE inch<>"'DO
BEGIN
READ(infile, inch); scannedText[i]:=inch;
=i+l
END

WHILE inch=""'DO
READ ((infil e, inch);

990128; P.F. Reynolds CS655

26

13

|++
++|
+=1
I=1+1

990128;

What' sthisviolate?

P.F. Reynolds CS655

27

What' sthisviolate?

TY PE stadkType = array[1..100] of INTEGER,;
VAR stad: stadkType;
top: integer = O;

PROCEDURE PUSH (object: INTEGER);
END; { PUSH}
PROCEDURE POP (VAR object: INETGER);
END:; { POP}
BEGIN {main}

push(10);

IF stadk[1] =. ..

END. {main}

990128; P.F. Reynolds CS655

28

14

What' sthisviolate?

PRINTF("Address of x: %d\n", &Xx); -- Fails asmetimes

PRINTF("Address of x: %ld\n", (long &Xx); -- Succeeals

990128; P.F. Reynolds CS655

29

What' sthisviolate?

VAR i: INTEGER,

PROCEDURE ref (VAR j: INETGER);
VAR X: INTEGER,;
BEGIN
=2
X:= j+Hi;
WRITELN (x)
END; {ref}

BEGIN
ii=1;
ref(i);

END.

990128; P.F. Reynolds CS655

30

15

What' sthisviolate?

TYPE stakType=ARRAY [0..100 OF INTEGER;
stptr="stadkType;

FUNCTION fO (x: INTEGER; y:BOOLEAN): stptr; ~ -- OK!
FUNCTION f1 (x: INTEGER; y: BOOLEAN): stackType -- ERROR!

990128; P.F. Reynolds CS655 31

What' sthisviolate?

TY PE PiType = (tenn, others);
PiRec = RECORD
CASE PiType OF

tenn: (intPi: integer);
others: (realPi: red);

VAR wholePi: Pireg

BEGIN

whalePi.intPi:= 3;

WRITELN(wholePi.realPi . .)
END.

990128; P.F. Reynolds CS655 32

16

What' sthisviolate?

IFn=0THEN GOTO 20
print("nisnot zero")
GOTO 30

20 pint("nis zero")

30 CONTINUE

990128; P.F. Reynolds CS655

33

17

