
1

990128; P.F. Reynolds CS655 1

Principles

990128; P.F. Reynolds CS655 2

MacLennan’s Pr inciples

• Abstraction

– Avoid requiring something to be stated more than
once; factor out the recurring pattern.

– Subprograms, user defined types, inheritance

• Automation

– Automate mechanical, tedious, or error-prone
activities.

– Garbage collection; looping structures

2

990128; P.F. Reynolds CS655 3

MacLennan’s Pr inciples (2)

• Defense in Depth
– Have a series of defenses so that if an error isn't caught

by one, it will probably be caught by another.

– Array bound being part of type; definite loops.

• Information Hiding
– The language should permit modules to be designed so

that (1) the user has all of the information needed to use
the module correctly, and nothing more; and (2) the
implementor has all of the information needed to
implement the module correctly, and nothing more.

– Modules, packages, objects

990128; P.F. Reynolds CS655 4

MacLennan’s Pr inciples (3)

• Labeling

– Avoid arbitrary sequences more than a few items long.
Do not require the user to know the absolute position of
an item in a list. Instead, associate a meaningful label
with each item and allow the items to occur in any order.

– Case statement, position-independent parameters.

• Localized Cost

– Users should only pay for what they use; avoid
distributed costs.

– Violations: Algol60 loops, dynamic type binding.

3

990128; P.F. Reynolds CS655 5

MacLennan’s Pr inciples (4)

• Manifest Interface

– All i nterfaces should be apparent (manifest) in the
syntax.

– Module specifications; function prototypes

• Orthogonality

– Independent functions should be controlled by
independent mechanisms.

– Algol68 types; Ada parameter passing

990128; P.F. Reynolds CS655 6

MacLennan’s Pr inciples (5)

• Portabili ty

– Avoid features or facilit ies that are dependent on a
particular machine or a small class of machines.

– Ada prohibition of aliasing; C/Algol60 I/O

• Preservation of Information

– The language should allow the representation of
information that the user might know and that the
compiler might need.

– Definite looping structures

4

990128; P.F. Reynolds CS655 7

MacLennan’s Pr inciples (6)

• Regular ity

– Regular rules, without exception, are easier to learn, use
describe and implement.

– Violations: strings in most langs; Pascal functions.

• Secur ity

– No program that violates the definition of the language,
or its own intended structure, should escape detection.

– Strong typing in Algol60, Pascal, Ada, C++

990128; P.F. Reynolds CS655 8

MacLennan’s Pr inciples (7)

• Simplicity
– A language should be as simple as possible. There

should be a minimum number of concepts, with simple
rules for their combination.

– Pascal; Ada name equivalence

• Structure
– The static structure of the program should correspond in

a simple way to the dynamic structure of the
corresponding computations.

– Single entry / single exit; violation: Pascal’s upside-
down procedures first form.

5

990128; P.F. Reynolds CS655 9

MacLennan’s Pr inciples (8)

• Syntactic Consistency

– Similar things should look similar; different things
different.

– Violations: ,/; in Algol68; blocks vs compound
statements; Ada private / limited private

• Zero-One-Infinity

– The only reasonable numbers are zero, one, and infinity.

– Array dimensions; identifier sizes; function nesting

990128; P.F. Reynolds CS655 10

More Pr inciples (Ghezzi & Jazayer i)

• Efficiency

– translation & execution

• Readability

• Writability

• Reliability

– rigorous semantics; clear distinction between static
and dynamic checks; modularity

6

990128; P.F. Reynolds CS655 11

More Pr inciples

• Predictability

• Learnabili ty

• Maintainability

• Verifiability

• ??? Must it end in “ ility” ?

990128; P.F. Reynolds CS655 12

More Pr inciples (Yemini & Berry)

• Wide hor izon:

– Whenever the semantics of a construct, C, in a
language for concurrent programming implies the
delay of a process (task) executing in C, C should be
able to have other alternatives, and all such
constructs should be able to serve as alternatives to
each other.

– Not satisfied by semaphores, monitor calls or Ada
select statement.

7

990128; P.F. Reynolds CS655 13

More Pr inciples (Yemini & Berry) (2)

• Closure under binding:

– For every concurrent program, there exists a
sequential, possibly non-deterministic, program with
an equivalent semantics.

– No unitask program in Ada can simulate:
declare
 task t1 is s1.e1() end t1;

 task t2 is s2.e2() end t2;
 begin end;

 -- s1 and s2 are called in arbitrary order.

990128; P.F. Reynolds CS655 14

What’s this violate?
 COMMON a, b, lab
 . . .
3 WRITE(6,5)
5 FORMAT(. . .)
 ASSIGN 3 TO lab
 CALL sub2
 END

 SUBROUTINE sub2
 COMMON c, d, lab
 . . .
 GOTO lab
3 i = 1/0
 RETURN
 END

8

990128; P.F. Reynolds CS655 15

What’s this violate?

10 i=0
 call doThing(... i ...)
 i=i+1
 IF i <= n THEN GOTO 10

990128; P.F. Reynolds CS655 16

What’s this violate?
i = 10;
s = 10;
 . . .
s = "this is a string";
 . . .
IF i != 10 THEN someFunc(i);
 . . .
s = 3.14159;
 . . .
IF s = pi THEN . . .

9

990128; P.F. Reynolds CS655 17

What’s this violate?
val = -7
a= val >> 2
val = 15
a = val << 18

990128; P.F. Reynolds CS655 18

What’s this violate?
GOTO i-- branch to i-th statement
 <statement 1>
 <statement 2>
 . . .
 <statement i>
 . . .
 <statement n>

10

990128; P.F. Reynolds CS655 19

What’s this violate?

990128; P.F. Reynolds CS655 20

What’s this violate?

DIMENSION a(20)
CALL subr(a)
 . . .
END

SUBROUTINE subr (n)
DIMENSION n(25);
 . . .
IF n(22) = ...
 . . .
END

11

990128; P.F. Reynolds CS655 21

What’s this violate?
i:= 1;
WHILE i < n DO
 BEGIN
 WRITE (exp(i));
 i:= i+1
 END;

i:= 1;
REPEAT
 WRITE (exp(i));
 i:= i+1
UNTIL i = n

FOR i:= 1 TO n-1 DO
 WRITE (exp(i))

990128; P.F. Reynolds CS655 22

What’s this violate?

FOR (; curr != NULL ; curr = temp)
{
 temp = curr->next;
 FREE ((char *) curr);
}

12

990128; P.F. Reynolds CS655 23

What’s this violate?

IF (I = 0) …
IF (I == 0) ...

990128; P.F. Reynolds CS655 24

What’s this violate?

10 IF (n > 0) THEN GOTO 20
 n = 0
 GOTO 22
20 IF (n > 0) THEN GOTO 30
 IF (m > 0) Then GOTO 25
 n = infinity
 GOTO 40
25 n = m/2
30 IF (n < 1000) THEN GOTO 40
 n = n - 1729
 GOTO 10
40 CONTINUE

13

990128; P.F. Reynolds CS655 25

What’s this violate?

GOTO 10
 . . .
ASSIGN 20 to n
GOTO n, (10,20,30,40) -- assigned GOTO
 . . .
n = 3
GOTO (10,20,30,40), n -- computed GOTO

990128; P.F. Reynolds CS655 26

What’s this violate?
WHILE inch = ' ' DO
 READ(infile, inch);
i:= 1;
WHILE inch <> ' ' DO
 BEGIN
 READ(infile, inch); scannedText[i]:= inch;
 i:= i+1
 END
WHILE inch = ' ' DO
 READ(infile, inch);

14

990128; P.F. Reynolds CS655 27

What’s this violate?

I++
++I
I+=1
I=I+1

990128; P.F. Reynolds CS655 28

What’s this violate?
TYPE stackType = array[1..100] of INTEGER;
VAR stack: stackType;
 top: integer = 0;
PROCEDURE PUSH (object: INTEGER);
 . . .
END; { PUSH}
PROCEDURE POP (VAR object: INETGER);
 . . .
END; { POP}
 . . .
BEGIN {main}
 push(10);
 IF stack[1] = . . .
 . . .
END. { main}

15

990128; P.F. Reynolds CS655 29

What’s this violate?

PRINTF("Address of x: %d\n", &x); -- Fails sometimes

PRINTF("Address of x: %ld\n", (long) &x); -- Succeeds

990128; P.F. Reynolds CS655 30

What’s this violate?
VAR i: INTEGER;

PROCEDURE ref (VAR j: INETGER);
 VAR x: INTEGER;
 BEGIN
 j:= 2;
 x:= j+i;
 WRITELN (x)
 END; { ref}

BEGIN
 i:= 1;
 ref(i);
 . . .
END.

16

990128; P.F. Reynolds CS655 31

What’s this violate?

TYPE stackType=ARRAY[0..100] OF INTEGER;
 stptr=^stackType;
 . . .
FUNCTION f0 (x: INTEGER; y:BOOLEAN): stptr; -- OK!
FUNCTION f1 (x: INTEGER; y: BOOLEAN): stackType -- ERROR!

990128; P.F. Reynolds CS655 32

What’s this violate?

TYPE PiType = (tenn, others);
 PiRec = RECORD
 CASE PiType OF
 tenn: (intPi: integer);
 others: (realPi: real);
VAR wholePi: Pirec;
BEGIN
 wholePi.intPi:= 3;
 . . .
 WRITELN(wholePi.realPi . . .)
END.

17

990128; P.F. Reynolds CS655 33

What’s this violate?

 IF n = 0 THEN GOTO 20
 print("n is not zero")
 GOTO 30
20 print("n is zero")
30 CONTINUE

