
1

04 February 1999; CS655

FORTRAN

04 February 1999; CS655

FORTRAN Concepts/Contributions

• Binding time

• Separate compilation

• Modules

• Retention (data)

• Initialization of data objects

• Strong/weak typing (FORTRAN definitely weak!)

• Auto declaration

• Operator overloading

• Aliasing (in common blocks)

• Coercion

2

04 February 1999; CS655

FORTRAN Design Considerations

• Underlying hardware

• Eff iciency (time)
– direct translation to machine ops

– optimization
• DO loops

• array subscripting

• Efficiency (space)
– equivalence

– common

– flat structure (no recursion)

04 February 1999; CS655

FORTRAN & Design Principles

• Abstraction (control)

• Defense in depth (assigned, computed GOTO; DO loop)

• Structure (goto’s)

• Syntactic consistency (two goto types)

• Preservation of information (DO loop)

• Zero-one-infinity (array dims, identifier length)

• Regularity (strings are second class)

3

04 February 1999; CS655

FORTRAN: Interesting Problems

• Array subscripting
– limit of three dimensions

– limit on subscript expressions

• Parameter passing
– reference as implemented is dangerous (expr actuals)

• Computed/Assigned GOTO’s

• Syntax
– space compression combined with no key words

DO 10 I = 1.10

DO 10 I = 1,10

04 February 1999; CS655

ALGOL60

4

04 February 1999; CS655

ALGOL was indeed an achievement.
It was a significant advance on most

of its successors.

 --Alan Perlis

04 February 1999; CS655

ALGOL60

• Design by committee -- US/Europe -- 1957

• Goals:
– Machine independence

– Improve RE: FORTRAN's established flaws

– One standard to end "proli feration" of languages

• Model of Computation:
– Static block structure (gave additional control over name

space)

– Recursion [multiple instances of same routine(s)] --birth
of stack model

5

04 February 1999; CS655

ALGOL60 Contributions
• Declaratives:

– Named data objects

– Declared their types

– Determined storage in activation record

• (or what needed to be done at runtime)

– Bound name to that storage

– Allowed for initialization

• Block structure: scope, visibility, hiding
– Scope: range over which name is defined

– Visibilit y: set of names that have meaning

– Hiding: re-use of name (in new context)

c.f. FORTRAN:
 - named the object
 - allocated fixed memory
 - provided for initialization

04 February 1999; CS655

ALGOL60 Contributions (2)

• Static vs dynamic referencing became an issue
– Static: meaning of non-local ref determined by

static context

– Dynamic: meaning of non-local ref determined by
dynamic call chain

6

04 February 1999; CS655

ALGOL60 Types

• Primitive types:
– real, integer, boolean, strings (2nd class)

– no dub precision (for machine independence)

– no complex

• Constructors:
– arrays only

• arbitrary bounds

• arbitrary dimensions

• arbitrary subscripts
– includes functions and other array refs

• dynamic sizing on block entry

Zero-one-infinity

04 February 1999; CS655

ALGOL60 Types (more)

• In general, declarations were required
– no auto declarations (except procedure formals, labels)

• Strong typing:
– The only operations allowed to be performed on a data

object are those defined for objects of that type
• (one of many defs for strong typing. Others?)

• Many loopholes:
– labels and integers

– specifications and declarations

7

04 February 1999; CS655

ALGOL60 Imperatives

• Imperatives:

– Computational, control flow, no I/O

• Computational-
– assignment much more general than FORTRAN's

fac:= IF x <= 1 THEN 1 ELSE x* fac(x-1)

• Control flow-

– Conditional had awkward inconsistency:
IF ~ THEN s1 ELSE ~ -- s1 can't be cond'l

--violates regularity

04 February 1999; CS655

ALGOL60 Oddities
– Conditional booleans odd:

IF IF IF a THEN b ELSE c THEN d

 ELSE f THEN g ELSE h < k

– For loop -- very general
FOR i:= 3,7,

11 STEP 1 UNTIl 16,

i/2 WHILE i >= 1, 2 STEP i UNTIL 32 DO ~

(generates: 3,7,1,12,13,14,15,16,

 8,4,2,1,2,4,8,16,32)

--user can modify loop indices (see Knuth)
-- violates localized cost

8

04 February 1999; CS655

Switch (early case / switch statement)
 BEGIN

switch status= in_air, take_off, landing, on_runway
 …
i:= <integer value>
goto status[i];
 in_air: ... } no ordering req'mnts
 landing: ... } can be
 take_off: ... } anywhere
 …
END

BEGIN
 switch s = L, IF j > 0 THEN M ELSE N, Q
 …
 i:= <integer value>
 goto s[i]; -- dest depends on j i f i=2.
 …
END

See Knuth for some gems (e.g. p. 617).

-- out of range treated as fall-through

Switch
 - supports labeling
 - violates structure &
 security

Designational
 expression

04 February 1999; CS655

Example from Knuth: Switch

9

04 February 1999; CS655

Name Parameter Passing
PROCEDURE swap (x, y);
 integer x, y;
 BEGIN INTEGER t;
 t:= x;
 x:= y;
 y:= t;
END

swap (i,j) -- works (x:i, y:j)
swap (A[i],i) -- works (x:A[i], y:i)
swap (i,A[i]) -- doesn't work! (x:i, y:A[i])

-- Similarly, Knuth claims you can't write a general
successor function.

 -- Why?

04 February 1999; CS655

Jensen’s Device
real procedure SUM (EXPR, INDEX, LB, UB); value LB, UB;

 real EXPR; integer INDEX, LB, UB;

 begin real TEMP; TEMP := 0;

 for INDEX := LB step 1 until UB do TEMP:= TEMP + EXPR;

 SUM:= TEMP

end proc SUM;

SUM(A[I], I, 1, 25);

SUM (SUM(B[I ,J], J, 1, N), I, 1, M) -- How many calls to SUM?

Manifest interface???

10

04 February 1999; CS655

Undesirable Interactions
 BEGIN
 INTEGER max, m, n;
 READ (max);
 FOR i:= 1 UNTIL max DO
 BEGIN
 READ (m,n);
 BEGIN
 OWN REAL ARRAY a[1:m, 1:n]; --Storage?
 ...
 <operations on a>
 ...
 END
 END
 END

• How can we deal with changing bounds while trying
to keep a copy of "a" around between block entries?

