FORTRAN

04 February 1999; CS655

FORTRAN Concepts/Contributions

* Bindingtime

» Separate cmpil ation

 Modues

» Retention (data)

 Initialization d data objeds

» Strong/wedk typing (FORTRAN definitely wegk!)
» Auto dedaration

» Operator overloading

» Aliasing (in common Hocks)

» Coercion
04 February 1999; CS655




FORTRAN Design Considerations

» Underlying hardware
» Efficiency (time)
— direct trandation to machine ops
— optimizaion
* DO loops
* array subscripting
 Efficiency (space)
— equivalence
— common
— flat structure (noreaursion)

04 February 1999; CS655

FORTRAN & Design Principles

» Abstradion (control)

» Defensein depth (assgned, computed GOTO; DO loop)
» Structure (goto’'s)

» Syntadic consistency (two gao types)

* Preservation of information (DO loop)

» Zero-one-infinity (array dims, identifier length)

» Regularity (strings are seamndclass)

04 February 1999; CS655




FORTRAN: Interesting Problems

Array subscripting

— limit of threedimensions

— limit on subscript expressions

Parameter passing

— reference aimplemented is dangerous (expr aduals)
Computed/Assigned GOTO’s

* Syntax
— space ompression combined with nokey words
DO101=1.10
DO101=1,10

04 February 1999; CS655

ALGOLG60

04 February 1999; CS655




ALGOL wasindeal an achievement.
It was a significant advance on most
of its succesors.

--Alan Perlis

04 February 1999; CS655

ALGOLG0

» Design bycommittee-- US/Europe -- 1957
» Godls:
— Madine independence
— Improve RE: FORTRAN's establi shed flaws
— One standard to end "proliferation” of languages
* Modd of Computation:
— Static block structure (gave additional control over name
spacg
— Recursion[multiple instances of same routine(s)] --birth
of stack model

04 February 1999; CS655




ALGOLG60 Contributions

c.f. FORTRAN:

. - named the objed

— Named dataobjeds - all ocated fixed memory
— Dedared their types - provided for initiali zation

» Dedaratives:

— Determined storage in adivation recor
* (or what needed to be dore & runtime)

— Bound rameto that storage
— Allowed for initialization

» Block structure: scope, visibility, hiding
— Scope: range over which nameis defined
— Visihility: set of names that have meaning
— Hiding: re-use of name (in new context)

04 February 1999; CS655

AL GOL 60 Contributions (2)

 Static vsdynamic referencing became an issue

— Static: meaning of non-locd ref determined by
static context

— Dynamic: meaning of nortlocd ref determined by
dynamic cdl chain

04 February 1999; CS655




ALGOLG60 Types

* Primitivetypes:
— red, integer, bodean, strings (2ndclass)
— no dubpredsion (for macdine independence)
— no complex
» Constructors:
— arraysonly
* arbitrary bound
« arbitrary dimensions ’~ Zero-one-infinity
* arbitrary subscripts
— includes functions and other array refs
 dynamic sizing onblock entry

04 February 1999; CS655

ALGOLG60 Types (more)

* In genera, dedarations were required

— noauto dedarations (except procedure formals, labels)

 Strong typing:

— The only operations al owed to be performed onadata

objead are those defined for objeds of that type
* (one of many defsfor strongtyping. Others?)

e Many loophdes:
— labelsand integers
— spedficaions and dedarations

04 February 1999; CS655




ALGOLG60 I mperatives

* Imperatives:
— Computational, control flow, no I/0
» Computational-
— assignment much more general than FORTRAN's
fac=IF x <= 1 THEN 1 ELSE x*faqx-1)

e Control flow-

— Condtional had awkward inconsistency:
IF~THEN s1 ELSE ~ -- sl can't be condl

--violates regularity

04 February 1999; CS655

ALGOL 60 Oddities

— Condtional bodeans odd:
IFIFIFaTHEN bELSEc THENd
ELSEf THEN g ELSE h<k

— For loop-- very general
FORi:= 3,7,
11STEP 1 UNTII 16,
i/2WHILE i >=1,2STEPi UNTIL 32DO ~
(generates: 3,7,1,12,1314,15,16,
8,4,2,1,2,4,8,16,32)

--user can modify loopindices (seeKnuth)

-- violates locdized cost
04 February 1999; CS655




Switch (early case/ switch statement)
BEGIN
switch status= in_air, take _off, landing, on_runway

= <|nteger value>
goto statugfi]; -- out of range tregted as fall-through

in 3|r }} nootrjgerlngreq mnts
andng ..} can Switch
t?k.e_off. ... } anywhere - suppats labeling
END - violates gructure &
seaurity

BEGIN
switchs=L,IFj>0THENM ELSEN, Q

= <i nteger value> \
gao gi]; -- dest dependsonj if i=2.

END

Designational
expression

See Knuth for somegems (e.g. p. 617).

04 February 1999; CS655

Example from Knuth: Switch

begin integer nn;
switch 4 := B[l], B[2];
switch B := A[G], 4[2]:
integer procedure F(n, §); valuen; integern; switch S;
begin nn := n; go toS[l]; F := nn end £
integer procedure (7;
begin integer n;

noi=nan; G = 0;
nn := if n < 1 then n else F(n—1, 4) + F(n—2, A)
end S;

outreal (1, F'(20, A)) end.

The output of this program should be {ub) (the twentieth
Fibonacel number).

04 February 1999; CS655




Name Parameter Passing

PROCEDURE swap (X, Y);
integer X, V;
BEGIN INTEGER ;
t=x;
XY,
yi=1;
END
swap (i,j) --works(x:i, y:j)
swap (Afi],i) -- works (x:A[i], y:i)
swap (i,A[i]) -- doesnt work! (x:i, y:A[i])

-- Similarly, Knuth claims you can't write ageneral
successor function.

- Why?

04 February 1999; CS655

Jensen’ s Device

red procedure SUM (EXPR, INDEX, LB, UB); vaue LB, UB;
red EXPR; integer INDEX, LB, UB,;
beginred TEMP;, TEMP :=0;
for INDEX := LB step 1until UB do TEMP:= TEMP + EXPR;
SUM:= TEMP
end proc SUM;

Manifest interface???

SUM(A[I], I, 1, 25); /

SUM (SUM(B[I,J], J, 1, N), I, 1, M) -- How many cdlsto SUM?

04 February 1999; CS655




Undesirable I nteractions

BEGIN
INTEGER max, m, n;
READ (max);
FORi:= 1 UNTIL max DO
BEGIN
READ (m,n);
BEGIN
OWN REAL ARRAY a1:m, 1:n]; --Storage?

<operations ona>

END
END
END

* How can we ded with changing baunds whil e trying
to kegpa py d "a" around ketween block entries?
04 February 1999; CS655

10



