T * On Orthogonality

1T *

[ [ [ [ [ [
» What makes orthogmality work?
— by remembering oy m + n things, weget m* n
cgoabilities.
» Orthogond ity says that no point should be
definable by more than one XY pair.
» Orthogondity advantageous only if:
m+n+e < m*n-e

m

ALGOLGS




ALGOLG68: Goals & History

Thesis: It isgood practice in programming language
design to abstain from exceptions.
* Design gals:
— gen pupose, rigorously-defined language
— Clea uptroude spotsin ALGOL60
 (but, Pascal morelike A60than A68is)
— orthogorality, extensibility
 ALGOLG68 - development started in mid-60's.

— Revised report (SIGPLAN Notices, May 1977 cleaed
up many ambiguities.

Key ldeasin ALGOLG8

o User type declarations (modes)

» Orthogona design (modes, structures, ops)

» Reference mode (pointers of a sort)

» United modes (predecessor to variant records)
» Auto dedaration of FOR LOOP index

» User-spedafied operator overloading

» Notion d "elaboration” on context entry




MoreKey |deas

* Mode requirement for formals

» Cadting: user-specd mode conversion

* Redefinition d operator precedence

* Collatera adions

e Semaphaes

 W-grammars - two-level grammar

o Contexts (strong firm, meek, wek, soft)
—  WRT coercion

AL GOL68 Structure

 ALGOLG68isblock structured w/ static scope rules

— Mondithic programming, asin ALGOLG60 (and later in
Pascd)

 ALGOL68smode of computation:
— static
— stad: block/procedure AR's; locd data objeds
— heg: “heg” -- dynamic-- dataobjeds

» ALGOLG68is an expression-oriented language
— (note influence on C/C++)




ALGOL68: Organization

» Dedarations:
— Must be given (FOR LOOP index only exception)
— Can name new types (modes)

* Imperatives (units)
— 15 major unit types

— Asdgnment is allowable side-effed of units
«cf.C

Data types (primitive modes)

Int }
Real }
Char } primitives
Bod }
Void }

Modes creaed from primitives --defined in " prelude”
— String

— Compl

— Bits - Word full of bits




More Primitive M odes

— Bytes- Word full of chars
— Sema - Semaphae

— Format- 1/O

— File - 110

» User defined modes allowed:
Modelargeint = long INT
» andits attendant advantages

Non-primitive ("non-plain”) modes

» references *
* multiples (arrays, rows)
e structures

e unions *
* procedures *

* - unuwsual

--can be applied to primitives or other constucted
modes




References

» Variable X has two attributes of concern:
— itsvaue
— reference to storage where valueis kept
* Most languages dont distinguish
*eQg. X=X + 2

[ "value of x”
"ref to placewhere valueis gored"

* "Thetypeof x isinteger" and " The type of values assigned
to xisinteger" get combined in this case.

— ALGOL 68 made the distinction (asdoe.g. C & C++).

References

INT x -- means x isaref to ojedsof type INT
In general, avariable stands for referenceto data objed

so, for:
X = X + 2
/ . . . . .
"dereferenced" to yield int, so + operationis meaningful
In genera, for V =E
¢ typeof V shoud beref (type of E)

Thus, if wededare: REFINT PNTTOX
— mode of PNTTOX is REF REF INT and

PNTTOX:= X -- assgns X's addressto PNTTOX

« action not obvious from syntax




Consider

INT x,y; --x&y are REFsto ofjectsof typeINT
REF INT r; -- risREF to REF INTs

X.=2; -- no ckref necessary
r=x; -- ditto - pointer assignment
- y=n -- assigns 2 as value of y
--two derefs required
X:=3: -- NOo ckref necessary,
Yi=1, --assigns3toy. Two derefsreq'd

< No visua cluethat y’svalue omuld be dfeded
by assignment to x.

ALGOL68 References

* Note: can't do:
rr=3; --risREFREF INT and 3isINT
-- no coercion pessible
(ref int) r:=3 -- will work. It assigns 3 to the last
variabler referred to (i.e. x).

* Note can create REF REF REF ... INT, etc if so inclined.

Syntadic consistency? Manifest interface?




Structuring Primitives

* ARRAYs(rows) -- 1D: ROW; 2D: ROW ROW;
 STRUCTURES

- eg.
[1:12] INT MONTH -- vedor of 12 integers

* Onequivaenceof arrays:
— Objeds of different dimensions -> different modes
— Bounds are not part of the mode (c.f. Pascal)
[1:10, 1:n] REAL time } equivaent
[1:100 7:11] REAL thing }  modes.

More Structured Types

» Aggregate Assignment
month:= (31,28,31,30,31,30,31,31,30,31,30,31)
--adopted in Ada and later languages
» Dynamic arays:
[m:n] INT ob
-- When encourtered, array with nm+1
locations created.




Continue Structuring Primitives

® FLEX ARRAY s-- change sizeonthefly.
- eg.
FLEX [1:0] INT obj -- arow with nointegers.
obj:=(5,5,5) -- changes boundsto 1:3 onthefly.
--bounds change only by assignment to whale aray
* Asideonstrings:
mode string = FLEX[1:0] CHAR -- donein prelude declaration

string gedings,
gredings.= "Gredings and salutations'

-- credes vedor exad length of string.

Structures:

s eg.
mode bin_tree =
struct( INT data,
REF bin_tree | _child, r_child)
A note reaursive definition
(illegal definitionw/o REF) -- Why?
» Other standard modes built up from structs:

—eg.
mode cmpl = struct ( REAL re, im)
mode bits = struct ( [1:bits width] BOOL x )
mode bytes = struct ( [1:bytes width] CHAR x)
mode sema = struct ( REF INT x)
--al in ALGOL68 prelude




Unions

e.g.
mode combine =UNION ( INT, BOOL )

combine x -- x can take onINT or BOOL values but
-- only uncer controll ed condtions.
assgnment is OK:
x:=5
x:=TRUE

More Unions
Using xin an expressionrequires:
CASE xIN --"conformity clause"
(INT x12): ... <usex1>
(BOOL x2): ... <use x2>
ESAC
Note:
UNION (1, t2, ..., tn) -- ti can be any mode.
-- Only limitation: can't haveti and REF ti in same union.
-- "incestuous union"
-- cregtes ambiguity in caseslike:
UNION (INT, REF INT) x;
INT y;

x:=y; -- Can't determine how many deREFsto do ony;
-- O:if xisrefrefint; 1:if xisref int

10



Procedures

Procedure units have mode and value;
— mode determined by arg modes and ret mode.

ALGOL68 suppats procedure-valued variables:
mode Pr = PROC ( vector, matrix ) matrix;

Pr P1, P2; -- two instances of generic Pr

P1 = PROC (vector a, matrix b) matrix:
{ procedure definition}

P2 = P1 -- P2 now has same def as P1
-- implemented using panters

Procedure modes can be used as parameters
— (routine texts)

Formals and aduals must have same type!

Coercion
six kinds (see Tannenbaum):
—  dereferencing
—  deproceduring
—  widening
—  rowing
— uniting
— voiding

11



More Coercion

inti; red r; [1:1] int rowi; ref int refi;
union(int, red) ir; procint p;

r=ilr -- | gets widened
ir=i; -- uniting
ir=r, -- uniting
i=p; -- deproceduring;
i:= refi; -- dereferencing (twice)
p; -- deproceduring; voiding
rowi:=5; -- rowing
CASE Clauses
CASEi IN
<actionl>,
<action2>,
<action3>,
<actiond>,
ESAC
* Pro(s):

— Enforced structure
e (ascompared to FTN computed gao and ALGOL 60 switch)
Cons:
— CASE expressonrestricted to INT -- abother

— Iffor, say, i =2, 4, and 6we want to perform the same
action, that action would haveto berepeaed in pace all
three times.

12



Continue Cons of CASE Statement

If during program devel opment/maintenance, an adion
got added or removed, programmer could miss the
change, and the compil er won't complain

— very difficult kind of error to identify.

=> hirth of the labeling principle (Tony Hoare ame
up with model Wirth included in Pascd).

* Catchall phrase (else, otherwise, etc) to cach cases not
named was born later (incorporated into Ada and
Modula-2)

A68 Summary...

e Coercion

— Elaborate interadions can lead to ambiguous and
difficult to read programs

— Coercion may take place when user didnt intend it to

— The more mercion atrandator can do, the less error
cheding provided to the user.

==> Do youprovide aercion at expense of seaurity?

13



A68 Summary (cont)...

* Type compatibility
— A68 uses structural equivalence

mode cmplex = struct (rea rp; real ip);
mode weather = struct (red temp; real humid);

 areequivalent
* violates programmer's intentions

A68 Summary (cont)...

» References

— While dangling refs are controlled in ALGOL 68
they can generally only be dhedked at runtime.

— Rule: in an assignment to aref variable, the
scope of the object being panted to must be &
least aslarge asthat of the ref variable itself.

— Dynamic data objeds are redaimed orly when
control |eaves the scope of the associated ref
variable.

14



A68 Summary (cont)...

* Orthogondity in general
(redl x,y; read((x,y)); if x<y thena dse b fi):=
b+ if a=at+l; a>bthen c:=c+1; +b else c=c-1; a
fi

— Small set of concepts interadingin avery complex way.

— How is smplicity best achieved?
» Algd68: orthogorsdlity

* Pascd: nonrotho + "simple fadlities with simple
interactions.”

Pascal

15



Pascd History

Wirth onDesign committeefor ALGOL68

— quit over differencesin design phil osophy
Pascd meant to be ssimple, teaching language
Target was CDC6000family initially

— explains functions having simple return types
only (fit in one 60-bit word)

Much of Pasca design dawn from ALGOL68

design

— Sometimes worse! (e.g. function return types, pointer
scope)

Pascal: First Impresson

» A collection d irregularities
— Files canna be passed by value

— Comporents of packed data structures cannat be passed
by reference

— Procs and funcs passed as parameters can only have by-
value parameters

— Functions can only return simple types

— Formal param types can only be spedfied byatype
identifier, not by its representation

— Variables of enumerated type can orly beinitialized by
assignment, not by input values

16



Discriminated & Free Union Variant Records

o Example (discriminated union):
Type state = (tennessee, rest);
pi _rep = record
case _|loc: state of

Freeunion tennessee: (intpi: integer);
removes tag rest: (repi: real);
end;
* Assume

VAR pi: pi_rep;

Variant Record Examples
CASE pi .l oc of

tennessee: pi.intpi:= 3; --OK. conpiler can
rest: pi.repi:= 3.1415926; -- often check

end;

pi.repi:= 3.1415926 --error if pi.loc = tennessee

pi.repi:= 3.1415926 -- OK if pi.loc=rest

pi.loc:=tennesee;  -- OK, but noaggregate

writeln(pi.intpi); -- garbage

* w/otags:
pi.repi:= 3.1415926 -- No way to catch this
writeln(pi.intpi); -- error, even at runtime.

==> verdict: variant records defed Pascd type system.
--inconsistent with rest of language.

17



Name vs Structure Equivalence

e Name

— Typesof two oljects match only if they were declared using the
same type name

— Provides best protection against errors

— Canrequire atificial creation of names simply to satisfy name-
equiv requirements.

— T1=T2 doesnat satisfy name equiv but is often allowed.

o Structura:
— Typesof two oljects match if they have the same "structure”
— Morerelaxed. Prevents unnecessary creation of type names.
— Hasmany logical flaws

Pascd Scope Rules...

Type T1 = ...

Procedure pil;
Type T2 = <structure of> T1 .- kX
TL = . . .
— which Tlisref'd at *** ?
* (A) T2'sreftoTlisto T1in ouer level
» (B) T2'sreftoT1listo Tlinlocd level
* Interpretation (B) is consistent with User Report,
* But (A) isoneusualy used...

18



Binding to Outer Level

record

r2ptr: “r2
end;

record

riptr: “r1

end;
If r2 defined in ouer scope, that's what r2ptr is boundto.

If r2 isdefined in ouer scope later on, meaning o program
is changed!
Wulf, Shaw: vulnerability...

Type rl

r2

19



Evaluate C

History

Design gaals

Contributions
Suppoart/violation d principles

| nteresting troublesome interadions among
language features.

20



