
1

On Orthogonality

• What makes orthogonality work?
– by remembering only m + n things, we get m * n

capabilit ies.

• Orthogonality says that no point should be
definable by more than one XY pair.

• Orthogonality advantageous only if:

 m+n + e < m*n - e

*

*

*

m

n

ALGOL68

2

ALGOL68: Goals & History

Thesis: It is good practice in programming language
design to abstain from exceptions.

• Design goals:
– gen purpose, rigorously-defined language

– Clear up trouble spots in ALGOL60

• (but, Pascal more like A60 than A68 is)

– orthogonality, extensibilit y

• ALGOL68 - development started in mid-60's.
– Revised report (SIGPLAN Notices, May 1977) cleared

up many ambiguities.

Key Ideas in ALGOL68

• User type declarations (modes)

• Orthogonal design (modes, structures, ops)

• Reference mode (pointers of a sort)

• United modes (predecessor to variant records)

• Auto declaration of FOR LOOP index

• User-specified operator overloading

• Notion of "elaboration" on context entry

3

More Key Ideas

• Mode requirement for formals

• Casting: user-spec'd mode conversion

• Redefinition of operator precedence

• Collateral actions

• Semaphores

• W-grammars - two-level grammar

• Contexts (strong, firm, meek, weak, soft)

– WRT coercion

ALGOL68 Structure

• ALGOL68 is block structured w/ static scope rules
– Monolithic programming, as in ALGOL60 (and later in

Pascal)

• ALGOL68's model of computation:

– static

– stack: block/procedure AR's; local data objects

– heap: “heap” -- dynamic-- data objects

• ALGOL68 is an expression-oriented language
– (note influence on C/C++)

4

ALGOL68: Organization

• Declarations:

– Must be given (FOR LOOP index only exception)

– Can name new types (modes)

• Imperatives (units)

– 15 major unit types

– Assignment is allowable side-effect of units
• c.f. C

Data types (primitive modes)
• Int }

• Real }

• Char } primitives

• Bool }

• Void }

• Modes created from primitives --defined in "prelude"
– String

– Compl

– Bits - Word full of bits

5

More Primitive Modes

– Bytes - Word full of chars

– Sema - Semaphore

– Format- I/O

– File - I/O

• User defined modes allowed:
 Mode largeint = long INT

• and its attendant advantages

Non-primitive ("non-plain”) modes

• references *

• multiples (arrays, rows)

• structures

• unions *

• procedures *
 * - unusual

--can be applied to primitives or other constucted
modes

6

References
• Variable X has two attributes of concern:

– its value

– reference to storage where value is kept

• Most languages don't distinguish

• e.g. x := x + 2

 "value of x”

 "ref to place where value is stored"

• "The type of x is integer" and "The type of values assigned
to x is integer" get combined in this case.

– ALGOL68 made the distinction (as do e.g. C & C++).

References
• INT x -- means x is a ref to objects of type INT

• In general, a variable stands for reference to data object

 so, for:

 x := x + 2

 "dereferenced" to yield int, so + operation is meaningful

• In general, for V := E
• type of V should be ref (type of E)

• Thus, if we declare: REF INT PNTTOX
– mode of PNTTOX is REF REF INT and

 PNTTOX:= X -- assigns X's address to PNTTOX
• action not obvious from syntax

7

Consider
 INT x,y; -- x&y are REFs to objects of type INT

 REF INT r; -- r is REF to REF INTs

 x:= 2;

 r:= x;

 y:= r;

 x:= 3;

 y:= r;

-- no deref necessary

-- ditto - pointer assignment

-- assigns 2 as value of y
 --two derefs required

-- no deref necessary;

-- assigns 3 to y. Two derefs req'd

No visual clue that y’s value could be affected
by assignment to x.

ALGOL68 References

• Note: can't do:

 r:= 3; -- r is REF REF INT and 3 is INT

 -- no coercion possible

 (ref int) r:= 3 -- will work. It assigns 3 to the last

variable r referred to (i.e. x).

• Note: can create REF REF REF ... INT, etc if so inclined.

Syntactic consistency? Manifest interface?

8

Structuring Primitives

• ARRAYs (rows) -- 1D: ROW; 2D: ROW ROW;

• STRUCTURES
– e.g.

 [1:12] INT MONTH -- vector of 12 integers

• On equivalence of arrays:
– Objects of different dimensions -> different modes

– Bounds are not part of the mode (c.f. Pascal)

 [1:10, 1:n] REAL time } equivalent

 [1:100, 7:11] REAL thing } modes.

More Structured Types

• Aggregate Assignment

month:= (31,28,31,30,31,30,31,31,30,31,30,31)

 --adopted in Ada and later languages

• Dynamic arrays:

 [m:n] INT obj

 -- When encountered, array with n-m+1

 locations created.

9

Continue Structuring Primitives
• FLEX ARRAYs -- change size on the fly.

– e.g.

 FLEX [1:0] INT obj -- a row with no integers.

 obj:= (5,5,5) -- changes bounds to 1:3 on the fly.

 --bounds change only by assignment to whole array

• Aside on strings:

 mode string = FLEX[1:0] CHAR -- done in prelude declaration

 string greetings;
 greetings:= "Greetings and salutations"
 -- creates vector exact length of string.

Structures:
• e.g.

 mode bin_tree =
 struct(INT data,
 REF bin_tree l_child, r_child)
 ^ note recursive definition

 (ill egal definition w/o REF) -- Why?

• Other standard modes buil t up from structs:

– e.g.
 mode compl = struct (REAL re, im)
 mode bits = struct ([1:bits_width] BOOL x)
 mode bytes = struct ([1:bytes_width] CHAR x)
 mode sema = struct (REF INT x)
 -- all in ALGOL68 prelude

10

Unions
• e.g.

 mode combine = UNION (INT, BOOL)

 . . .
 combine x -- x can take on INT or BOOL values but

-- only under controlled conditions.

• assignment is OK:

 x:= 5

 x:= TRUE

More Unions
• Using x in an expression requires:

 CASE x IN -- "conformity clause"

 (INT x1): ... <use x1>

 (BOOL x2): ... <use x2>

 ESAC

• Note:

 UNION (t1, t2, ..., tn) -- ti can be any mode.

 -- Only limitation: can't have ti and REF ti in same union.

 -- "incestuous union"

 -- creates ambiguity in cases like:

 UNION (INT, REF INT) x;

 INT y;

 . . .

 x:= y; -- Can't determine how many deREFs to do on y;

 -- 0: if x is ref ref int; 1: if x is ref int

11

Procedures
• Procedure units have mode and value;

– mode determined by arg modes and ret mode.

• ALGOL68 supports procedure-valued variables:
 mode Pr = PROC (vector, matrix) matrix;
 ...
 Pr P1, P2; -- two instances of generic Pr

 ...
 P1 = PROC (vector a, matrix b) matrix:
 { procedure definition}
 ...
 P2 = P1 -- P2 now has same def as P1
 -- implemented using pointers

• Procedure modes can be used as parameters
– (routine texts)

• Formals and actuals must have same type!

Coercion
• six kinds (see Tannenbaum):

– dereferencing

– deproceduring

– widening

– rowing

– uniting

– voiding

12

More Coercion

 int i; real r; [1:1] int rowi; ref int refi;

 union(int, real) ir; proc int p;

 r:= i/r -- i gets widened

 ir:= i; -- uniting

 ir:= r; -- uniting

 i:= p; -- deproceduring;

 i:= refi; -- dereferencing (twice)

 p; -- deproceduring; voiding

 rowi:= 5; -- rowing

CASE Clauses
CASE i IN
 <action1>,
 <action2>,
 <action3>,
 <action4>,
 . . .
ESAC

• Pro(s):
– Enforced structure

• (as compared to FTN computed goto and ALGOL60 switch)

• Cons:
– CASE expression restricted to INT -- a bother

– If for, say, i = 2, 4, and 6 we want to perform the same
action, that action would have to be repeated in place all
three times.

13

Continue Cons of CASE Statement

– If during program development/maintenance, an action
got added or removed, programmer could miss the
change, and the compiler won't complain

– very diff icult kind of error to identify.

 => birth of the labeling principle (Tony Hoare came
up with model Wirth included in Pascal).

• Catchall phrase (else, otherwise, etc) to catch cases not
named was born later (incorporated into Ada and
Modula-2)

A68 Summary...

• Coercion
– Elaborate interactions can lead to ambiguous and

difficult to read programs

– Coercion may take place when user didn't intend it to

– The more coercion a translator can do, the less error
checking provided to the user.

 ==> Do you provide coercion at expense of security?

14

A68 Summary (cont)...

• Type compatibili ty

– A68 uses structural equivalence

 mode complex = struct (real rp; real ip);

 mode weather = struct (real temp; real humid);

• are equivalent

• violates programmer's intentions

A68 Summary (cont)...

• References

– While dangling refs are controlled in ALGOL68
they can generally only be checked at runtime.

– Rule: in an assignment to a ref variable, the
scope of the object being pointed to must be at
least as large as that of the ref variable itself.

– Dynamic data objects are reclaimed only when
control leaves the scope of the associated ref
variable.

15

A68 Summary (cont)...

• Orthogonality in general

 (real x,y; read((x,y)); if x<y then a else b fi):=

 b+ if a:=a+1; a>b then c:=c+1; +b else c:=c-1; a

 fi

– Small set of concepts interacting in a very complex way.

– How is simplicity best achieved?

• Algol68: orthogonality

• Pascal: non-rotho + "simple facil ities with simple
interactions."

Pascal

16

Pascal History

• Wirth on Design committee for ALGOL68

– quit over differences in design philosophy

• Pascal meant to be simple, teaching language

• Target was CDC6000 family initially

– explains functions having simple return types
only (fit in one 60-bit word)

• Much of Pascal design drawn from ALGOL68
design
– Sometimes worse! (e.g. function return types, pointer

scope)

Pascal: First Impression
• A collection of irregularities

– Files cannot be passed by value

– Components of packed data structures cannot be passed
by reference

– Procs and funcs passed as parameters can only have by-
value parameters

– Functions can only return simple types

– Formal param types can only be specified by a type
identifier, not by its representation

– Variables of enumerated type can only be initialized by
assignment, not by input values

17

Discriminated & Free Union Variant Records

• Example (discriminated union):
 Type state = (tennessee, rest);
 pi_rep = record
 case loc: state of
 tennessee: (intpi: integer);
 rest: (repi: real);

end;

• Assume:

 VAR pi: pi_rep;

Free union
removes tag

Variant Record Examples
CASE pi.loc of
 tennessee: pi.intpi:= 3; --OK. compiler can
 rest: pi.repi:= 3.1415926; -- often check.
end;

pi.repi:= 3.1415926; --error if pi.loc = tennessee

pi.repi:= 3.1415926; -- OK if pi.loc=rest
pi.loc:= tennessee; -- OK, but no aggregate
writeln(pi.intpi); -- garbage

• w/o tags:
pi.repi:= 3.1415926; -- No way to catch this

writeln(pi.intpi); -- error, even at runtime.

 ==> verdict: variant records defeat Pascal type system.
 --inconsistent with rest of language.

18

Name vs Structure Equivalence

• Name:
– Types of two objects match only if they were declared using the

same type name

– Provides best protection against errors

– Can require artificial creation of names simply to satisfy name-
equiv requirements.

– T1 = T2 does not satisfy name equiv but is often allowed.

• Structural:
– Types of two objects match if they have the same "structure”

– More relaxed. Prevents unnecessary creation of type names.

– Has many logical flaws

Pascal Scope Rules...
 Type T1 = ...

 . . .

 Procedure p1;

 Type T2 = <structure of> T1 -- ***

 T1 = . . .

– which T1 is ref'd at *** ?

• (A) T2's ref to T1 is to T1 in outer level

• (B) T2's ref to T1 is to T1 in local level

• Interpretation (B) is consistent with User Report,

• But (A) is one usually used…

19

Binding to Outer Level
 Type r1 = record

 r2ptr: ^r2

 end;

 r2 = record

 r1ptr: ^r1

 end;

• If r2 defined in outer scope, that's what r2ptr is bound to.

• If r2 is defined in outer scope later on, meaning of program
is changed!

• Wulf, Shaw: vulnerability...

C

20

Evaluate C

• History

• Design goals

• Contributions

• Support/violation of principles

• Interesting troublesome interactions among
language features.

