AEVOTATIOVOA ZEUAVTIXO
(Denatational Semantics)

Formal Semantics

What does y:=f(x) + x mean?

— yisasdggned the value of f(x) + x

— y becomes apainter to the result of f(x) + x

— f(x) may or may nat have side dfeds

— statement is undefined if types aren't equivalent
— statement is undefined if types aren't compatible
— €fc

* Ned formal semantics to make meanings of programs
unambiguots.




Utility of Formal Semantics

* Handy for:
— language design
— proofs of corredness
— language implementation
— reasoning abou programs
— providing a dear spedfication of behavior

Formal Semantics (continued)

Tennent: " ... aprecise spedficdion d the meanings of
programs for use by programmers, language designers and
implementers, and in the theoretical investigations of

languege properties.”
* Threemajor approades:

1) Denotational: define functions that map syntactic
structures into mathematical objeds (e.g. numbers, truth
values & functions)

(Algebraic) - considered acomporent of denotational
2) Operational: formal virtual madine description (VDL,
H-Graphs)

3) Axiomatic: development of axioms defining meanings

of classic statement types. (Dijkstra, Hoare)




Uses

» Denotational: Ashcroft and Wadge ague best use
Islanguage design. (as opposed to retrofit, as
attempted with Ada). Used some for formal
verificdion.

» Operational: Best for implementation description.

 Axiomatic. Most often used for forma
verificaion.

Axiomatic Semantics

Axioms: a antecedent
C. consequent

null: {P} skip {P}

assignment:  {P.} x:= E{P} where P} isthe assertion formed
by repladng every occurrenceof x in P by E.
dternation:. {P"B} S, {Q}.{P"=B) S, {Q}
{P}if BthenS, dse S, {Q}

iteration: {P"B} S{P}
{P} whileB doS{P" -B}

compasition: {P} S {P}{P,} S, {P}....{P} S {P,}
{P} beginS,,S,, ..., S,end {P,.,}

rules of inference I




Axiomatic Semantics

Mor e axioms:;
consequence: {P;} S{Q}. PP, Q,F Q
{P} S{Q}
await: {P~B} S{Q}

{P} await B then S{Q}

cobegin:  {P,;} S1{Q;}.....{P} S {Q,} areinterferencefree
{P,™..."P} cobegin S, //.../ S, coend {Q; *..." Q}

Uses. Dijkstra swedkest precondtions
Temporal logic

Using Axiomatic Semantics

Prove norinterferencein the foll owing:

{x=0and y= 0}
S: cobegin

sl: awaittruetheny.=y +1
I

s2: await truethen x=x + 2
Il

s3: await y>0 then x=x+y

coend
{x=3 and y=1}




Denotational Semantics

» Assigning denotations to language @nstructs
« Utilizes domains and functions over domains

— domains are sets with propertiesthat allow usto ded with
questions regarding

* recursive definitions of functions (over domains) | [ Mathematical
« recursive definitions of domains recursion

e.g. consider (recursive function over domain)

f: Num - Num -- f: maps numbersinto numbers

Candidatesf's

» Two candidate "defining" functionsfor f:

(i) fx = (fx) + 1
(ii) fx = fx

* AssumingNum ={0,1,2,....}, thereisnof for (i) and every
f satisfies (ii).
* Incontrast:
(i) fx = (x=0) - 1, x* f(x-1)

uniquely definesf as fadorial




Scott’s Theory

» Scott's (1969 theory of domains ensures every definitionis
good by

— requiring all domainsto have an "implicit structure." This
requirement guarantees that all equations (e.g. i, ii andiii)
have & least one solution.

— providing dredion, usngimplicit structure, for choasing an
"intended" solution from the solutions guaranteed by (a).

* based on lattices and fixed pant theory.

* e.g. Numconsistsof O, 1, 2, ... and undefined
- Numg iscdled alifted domain

Defining Moment

e Thus,
(i) and (i) define f to be undefined and (iii) definesf as
fx=x! ifx=0,1, 2, ...
and f undefined = undefined

» Using[Jasavaueis an dternative to using partia
functions.

With [, all e ementsin damain have avaue.
— eg.f undsfined = undsfined

Scott's theory applies as well to recursive definitions of
domains.

— eg. listsdefined in terms of lists




On Defining a Language's Denotational
Semantics

Three @mporents:
» Abstrad syntax (syntadic domain)
— list of syntadic categories

— list of syntadic clauses (amapping orto immediate
constituents)

» Semantic Domain (Semantic Algebras)

— domain equations:. provide framework for defining
denotations

— setsthat are used as value spacesin PL semantics

e Semantic functions
— functions that define denatation d constructs
— semantic dauses

Terms

Ax.e: Church's lambda notation (seen before)
Ax.e:Aj - By = (Axe0=0
(Ax.e)a=[al/x]eforaz [
A-"proper el ement”
— MAX.eise.g. d astrict operation
— nonstrict operations all ow [ to be mapped to proper elements

(let x = e ine,) isasyntadic substitute for (Ax.e))e,

diverge: statement that goes into an infinite loop




More Terms

* X — ¢ Ue,: syntadic form for condtional
e.g. C[If B THEN C, ELSE C,] =As.B[B]s - C[C,]s[IC[C,]s

» Expressionsin mini-language asumed to have no side dfeds.
— eg. noreadsin expressions.

* [i - n]sisafunction upditing expression
([i - nl9)@i)=n
([i - n9() =s() Oj#i
— useful for reflecting effeds of updating the it component of a

store: it component changes; rest stays the same
— upckate's signature: |d x Nat x Store . Store

Even More Terms

* Interpretation d:
P[C.] =An. let s=(update [A] n newstore) in
let s = C[C]sin (access[Z]S)
— inpu number isassociated with identifier [A] in anew store
— then program bodyis evaluated
— then answer is extracted from store at [Z]

(program mapping: Nat - Nat; -- [0is possible because divergeis
possble)

» Clausesfor C are dl strict in use of store
* E doesnat modify store; expression evaluation ader isnot
spedfied
— e.g. E[E]s plus E[E,]s
» Samefor Bodeans




A Small Imperative Language
* Abstrad Syntax
P U Program
C 0 Command Syntadic
E 0 Expression caegories
B 0 Bodean-expr
N O Numeral

P:=C.
C:=C;C,|ifBthenC|if BthenC, elseC, |I:=E | diverge

Ex=E,+E|I|N Syntadic
B:=E, =E,|-B clauses

A Small Imperative Language (cont)

¢ Semantic domain

» Semantic Functions :
functions
P: Program — Nat — Natj clauses
P[C.] =An. let s= (update[A] n newstore) in

let s = C[C]sin (access[Z] S)
C: Command - Store, — Store;
CIC,;C,] = As. C[CJ] (C[Cyl9)
C[if B then C] =As. B[B]s - C[C]s]|s
C[if Bthen C, else C,] = As. B[B]s — C[C,]s|C[C,]s
C[I:=E] = As. update [I] (E[E]S) s
Cldiverge]l =As. U




A Small Imperative Language (cont)

Semantic Functions (cont)

E: Expression — Store - Nat
E[E,+E,] = As. E[E|]s plus E[E,]s
E[l] =As. access[I] s
E[N] =As. N[N] note I

B: Bodean-expr - Storely

B[E,=E,] = As. E[E,]s equals E[E,]s
B[-B] = As. not B[B]s

N: Numeral — Nat (omitted)

Semantic Domain

Truth Values
Domaint O Tr =B
Operations
true, false: Tr
not: Tr —» Tr
Identifiers
Domain i O Id = Identifier
Natural numbers
Domain n [0 Nat=N
Operations
Zero, one, .... Nat «——Zero orderfunctionl
plus: Nat x Nat — Nat
equals: Nat x Nat — Tr
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Semantic Domain (cont)

o Store
Domains Sore=1d - Nat
Operations
newstore: Store
newstore = Ai. zero
access: Id — Store — Nat
access = Ai. As. (i)
update: Id - Nat - Sore — Sore
update = Ai. An. As.[i - n|s
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