
1

∆ενοτατιοναλ Σεµαντιχσ
(Denotational Semantics)

Formal Semantics

What does y:= f(x) + x mean?

– y is assigned the value of f(x) + x
– y becomes a pointer to the result of f(x) + x
– f(x) may or may not have side effects
– statement is undefined if types aren't equivalent
– statement is undefined if types aren't compatible
– etc

• Need formal semantics to make meanings of programs
unambiguous.

2

Utility of Formal Semantics

• Handy for:
– language design

– proofs of correctness

– language implementation

– reasoning about programs

– providing a clear specification of behavior

Formal Semantics (continued)
Tennent: " ... a precise specification of the meanings of

programs for use by programmers, language designers and
implementers, and in the theoretical investigations of
language properties.”

• Three major approaches:

1) Denotational: define functions that map syntactic
structures into mathematical objects (e.g. numbers, truth
values & functions)

 (Algebraic) - considered a component of denotational
 2) Operational: formal virtual machine description (VDL,

H-Graphs)
 3) Axiomatic: development of axioms defining meanings

of classic statement types. (Dijkstra, Hoare)

3

Uses

• Denotational: Ashcroft and Wadge argue best use
is language design. (as opposed to retrofit, as
attempted with Ada). Used some for formal
verification.

• Operational: Best for implementation description.

• Axiomatic: Most often used for formal
verification.

Axiomatic Semantics
Axioms:

null : { P} skip {P}

assignment: { PE} x:= E { P} where PE is the assertion formed
by replacing every occurrence of x in P by E.

alternation: { P ̂ B} S1 {Q} , { P ̂ ¬B) S2 {Q}
{ P} if B then S1 else S2 {Q}

iteration: { P ̂ B } S { P}
{ P} while B do S { P ̂ ¬B}

composition: { P1} S1 {P2} ,{ P2} S2 {P3} ,…,{ Pn} Sn {Pn+1}
{ P1} begin S1, S2, …, Sn end {Pn+1}

x x

a: antecedent
c: consequent

rules of inference

4

consequence: { P1} S { Q1} , P P1, Q1 Q
{ P} S { Q}

await: { P ̂ B} S { Q}
{ P} await B then S { Q}

cobegin: { P1} S1 {Q1} ,…, { Pn} Sn {Qn} are interference free
 {P1 ^ … ^ Pn} cobegin S1 //…// Sn coend {Q1 ^…^ Qn}

Axiomatic Semantics

More axioms:

Uses: Dijkstra’s weakest preconditions
Temporal logic

Using Axiomatic Semantics
Prove noninterference in the following:

 {x =0 and y = 0}
 S: cobegin

 s1: await true then y:= y + 1
//

 s2: await true then x:= x + 2
//

 s3: await y>0 then x:= x + y

 coend
 {x =3 and y=1}

5

Denotational Semantics
• Assigning denotations to language constructs

• Utilizes domains and functions over domains
– domains are sets with properties that allow us to deal with

questions regarding
• recursive definitions of functions (over domains)

• recursive definitions of domains

 e.g. consider (recursive function over domain)

 f: Num → Num -- f: maps numbers into numbers

Mathematical
recursion

Candidates f’ s

• Two candidate "defining" functions for f:

 (i) fx = (fx) + 1

 (ii) fx = fx

• Assuming Num = {0,1,2,....} , there is no f for (i) and every
f satisfies (ii).

• In contrast:

 (iii) fx = (x=0) → 1, x * f(x-1)

 uniquely defines f as factorial

6

Scott’s Theory

• Scott's (1969) theory of domains ensures every definition is
good by:
– requiring all domains to have an "implicit structure." This

requirement guarantees that all equations (e.g. i, ii and ii i)
have at least one solution.

– providing direction, using implicit structure, for choosing an
"intended" solution from the solutions guaranteed by (a).

• based on lattices and fixed point theory.

• e.g. Num consists of 0, 1, 2, ... and undefined

 - Num⊥ is called a lifted domain

Defining Moment
• Thus,

 (i) and (ii) define f to be undefined and (iii) defines f as
fx = x! if x=0, 1, 2, ...

 and f undefined = undefined

• Using ⊥ as a value is an alternative to using partial
functions.

• With ⊥, all elements in domain have a value.

– e.g. f undefined = undefined

• Scott's theory applies as well to recursive definitions of
domains.

– e.g. lists defined in terms of lists

7

On Defining a Language's Denotational
Semantics

Three components:
• Abstract syntax (syntactic domain)

– list of syntactic categories
– list of syntactic clauses (a mapping onto immediate

constituents)

• Semantic Domain (Semantic Algebras)
– domain equations: provide framework for defining

denotations
– sets that are used as value spaces in PL semantics

• Semantic functions
– functions that define denotation of constructs
– semantic clauses

Terms

• λx.e: Church's lambda notation (seen before)
• λx.e : A⊥ → B⊥ ::= (λx.e)⊥ = ⊥
 (λx.e)a = [a/x]e for a ≠ ⊥
 ^-"proper element"

– λx.e is e.g. of a strict operation

– non-strict operations allow ⊥ to be mapped to proper elements

• (let x = e1 in e2) is a syntactic substitute for (λx.e2)e1

• diverge: statement that goes into an infinite loop

8

More Terms
• x → e1 e2: syntactic form for conditional
 e.g. C[If B THEN C1 ELSE C2] = λs.B[B]s → C[C1]s C[C2]s

• Expressions in mini-language assumed to have no side effects.
– e.g. no reads in expressions.

• [i → n]s is a function updating expression

 ([i → n]s)(i) = n

 ([i → n]s)(j) = s(j) ∀ j ≠ i

– useful for reflecting effects of updating the i th component of a
store: ith component changes; rest stays the same

– update's signature: Id x Nat x Store → Store

Even More Terms
• Interpretation of:

 P[C.] = λn. let s = (update [A] n newstore) in

 let s' = C[C]s in (access [Z]s')

– input number is associated with identifier [A] in a new store

– then program body is evaluated

– then answer is extracted from store at [Z]
(program mapping: Nat → Nat⊥ -- ⊥ is possible because diverge is

possible)

• Clauses for C are all strict in use of store

• E does not modify store; expression evaluation order is not
specified

– e.g. E[E1]s plus E[E2]s
• Same for Booleans

9

A Small Imperative Language
• Abstract Syntax

P ∈ Program

C ∈ Command

E ∈ Expression

B ∈ Boolean-expr

N ∈ Numeral

P ::= C.
C ::= C1;C2 | if B then C | if B then C1 else C2 | I:=E | diverge
E ::= E1 + E2 | I | N

B ::= E1 = E2 | ¬B

Syntactic
categories

Syntactic
clauses

A Small Imperative Language (cont)
• Semantic domain

 . . .

• Semantic Functions

P: Program → Nat → Nat⊥

 P[C.] = λn. let s = (update[A] n newstore) in

 let s’ = C[C]s in (access[Z] s’)

C: Command → Store⊥ → Store⊥

 C[C1;C2] = λs. C[C2] (C[C1]s)
 C[if B then C] = λs. B[B]s → C[C]s | s

 C[if B then C1 else C2] = λs. B[B]s → C[C1]s | C[C2]s
 C[I:=E] = λs. update [I] (E[E]s) s
 C[diverge] = λs. ⊥

functions
clauses

10

A Small Imperative Language (cont)
• Semantic Functions (cont)

E: Expression → Store → Nat

 E[E1+E2] = λs. E[E1]s plus E[E2]s
 E[I] = λs. access [I] s
 E[N] = λs. ΝΝ[[Ν]]

B: Boolean-expr → Store → Tr

 B[E1=E2] = λs. E[E1]s equals E[E2]s
 B[¬B] = λs. not B[B]s

N: Numeral → Nat (omitted)

note

• Truth Values
Domain t ∈ Tr = B
Operations
 true, false: Tr
 not: Tr → Tr

• Identifiers
Domain i ∈ Id = Identifier

• Natural numbers
Domain n ∈ Nat = N
Operations
 zero, one, …: Nat
 plus: Nat x Nat → Nat
 equals: Nat x Nat → Tr

Semantic Domain

Zero order function

11

• Store
Domain s ∈ Store = Id → Nat
Operations
 newstore: Store

newstore = λi. zero
 access: Id → Store → Nat

 access = λi. λs. s(i)
 update: Id → Nat → Store → Store

 update = λi. λn. λs. [i → n]s

Semantic Domain (cont)

