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∆ενοτατιοναλ Σεµαντιχσ
(Denotational Semantics)

Formal Semantics

What does        y:= f(x) + x       mean?

– y is assigned the value of f(x) + x
– y becomes a pointer to the result of f(x) + x
– f(x) may or may not have side effects
– statement is undefined if types aren't equivalent
– statement is undefined if types aren't compatible
– etc

• Need formal semantics to make meanings of programs
unambiguous.
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Utility of Formal Semantics

• Handy for:
– language design

– proofs of correctness

– language implementation

– reasoning about programs

– providing a clear specification of behavior

Formal Semantics (continued)
Tennent:  " ... a precise specification of the meanings of

programs for use by programmers, language designers and
implementers, and in the theoretical investigations of
language properties.”

• Three major approaches:

1) Denotational:  define functions that map syntactic
structures into mathematical objects (e.g. numbers, truth
values & functions)

      (Algebraic) - considered a component of denotational
 2) Operational:  formal virtual machine description (VDL,

H-Graphs)
 3) Axiomatic:    development of axioms defining meanings

of classic statement types.  (Dijkstra, Hoare)
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Uses

• Denotational: Ashcroft and Wadge argue best use
is language design.  (as opposed to retrofit, as
attempted with Ada).  Used some for formal
verification.

• Operational:  Best for implementation description.

• Axiomatic:    Most often used for formal
verification.

Axiomatic Semantics
Axioms:

null : { P} skip {P}

assignment: { PE}  x:= E { P} where PE  is the assertion formed
by replacing every occurrence of x in P by E.

alternation: { P ̂  B} S1 {Q} , { P ̂  ¬B)  S2  {Q}
{ P} if B then S1 else S2 {Q}

iteration: { P ̂  B } S { P}
{ P} while B do S { P ̂  ¬B}

composition: { P1} S1 {P2} ,{ P2} S2 {P3} ,…,{ Pn} Sn {Pn+1}
{ P1} begin S1, S2, …, Sn end {Pn+1}

x x

a: antecedent
c: consequent

rules of inference
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consequence: { P1} S { Q1} ,  P    P1, Q1   Q
{ P} S { Q}

await: { P ̂  B} S { Q}
{ P} await B then S { Q}

cobegin:     { P1} S1 {Q1} ,…, { Pn} Sn {Qn} are interference free
       {P1 ^ … ^ Pn} cobegin S1 //…// Sn coend {Q1 ^…^ Qn}

Axiomatic Semantics

More axioms:

Uses:  Dijkstra’s weakest preconditions
Temporal logic

Using Axiomatic Semantics
Prove noninterference in the following:

   {x =0 and y = 0}
   S: cobegin

  s1:  await true then y:= y + 1
//

  s2:  await true then x:= x + 2
//

  s3:  await  y>0  then x:= x + y

        coend
    {x =3 and y=1}
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Denotational Semantics
• Assigning denotations to language constructs

• Utilizes domains and functions over domains
– domains are sets with properties that allow us to deal with

questions regarding
• recursive definitions of functions (over domains)

• recursive definitions of domains

 e.g. consider (recursive function over domain)

        f: Num → Num               -- f: maps numbers into numbers

Mathematical
recursion

Candidates f’ s

•  Two candidate "defining" functions for f:

             (i)  fx = (fx) + 1

             (ii ) fx = fx

• Assuming Num = {0,1,2,....} , there is no f for (i) and every
f satisfies (ii ).

• In contrast:

            (iii ) fx = (x=0) → 1,  x * f(x-1)

        uniquely defines f as factorial
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Scott’s Theory

• Scott's (1969) theory of domains ensures every definition is
good by:
– requiring all domains to have an "implicit structure."  This

requirement guarantees that all equations (e.g. i, ii and ii i)
have at least one solution.

– providing direction, using implicit structure, for choosing an
"intended" solution from the solutions guaranteed by (a).

• based on lattices and fixed point theory.

• e.g. Num consists of 0, 1, 2, ... and undefined

                 - Num⊥ is called a lifted domain

Defining Moment
• Thus,

        (i) and (ii ) define f to be undefined and (iii ) defines f as
fx = x!   if x=0, 1, 2, ...

              and f undefined = undefined

• Using ⊥ as a value is an alternative to using partial
functions.

•  With ⊥, all elements in domain have a value.

–  e.g. f  undefined = undefined

• Scott's theory applies as well to recursive definitions of
domains.

– e.g. lists defined in terms of lists
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On Defining a Language's Denotational
Semantics

Three components:
• Abstract syntax (syntactic domain)

– list of syntactic categories
– list of syntactic clauses  (a mapping onto immediate

constituents)

• Semantic Domain (Semantic Algebras)
– domain equations: provide framework for defining

denotations
– sets that are used as value spaces in PL semantics

• Semantic functions
– functions that define denotation of constructs
– semantic clauses

Terms

•  λx.e: Church's lambda notation (seen before)
•  λx.e : A⊥ → B⊥  ::= (λx.e)⊥ = ⊥
                                     (λx.e)a = [a/x]e for a ≠ ⊥
                                                                                 ^-"proper element"

–  λx.e is e.g. of a strict operation

–  non-strict operations allow ⊥ to be mapped to proper elements

• (let x = e1 in e2) is a syntactic substitute for (λx.e2)e1

• diverge: statement that goes into an infinite loop
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More Terms
• x → e1  e2: syntactic form for conditional
      e.g. C[If B THEN C1 ELSE C2] = λs.B[B]s → C[C1]s C[C2]s

• Expressions in mini-language assumed to have no side effects.
– e.g. no reads in expressions.

• [i → n]s is a function updating expression

           ([i → n]s)(i) = n

           ([i → n]s)(j) = s(j)   ∀ j ≠ i

– useful for reflecting effects of updating the i th component of a
store:  ith component changes; rest stays the same

– update's signature: Id x Nat x Store → Store

Even More Terms
• Interpretation of:

        P[C.] = λn. let s = (update [A] n newstore) in

                      let s' = C[C]s in (access [Z]s')

– input number is associated with identifier [A] in a new store

– then program body is evaluated

– then answer is extracted from store at [Z]
(program mapping: Nat → Nat⊥   -- ⊥ is possible because diverge is

possible)

• Clauses for C are all strict in use of store

• E does not modify store; expression evaluation order is not
specified

– e.g.  E[E1]s  plus  E[E2]s
• Same for Booleans
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A Small Imperative Language
• Abstract Syntax

P ∈ Program

C ∈ Command

E ∈ Expression

B ∈ Boolean-expr

N ∈ Numeral

P ::= C.
C ::= C1;C2 | if B then C | if B then C1 else C2 | I:=E | diverge
E ::= E1 + E2 | I | N

B ::= E1 = E2 | ¬B

Syntactic
categories

Syntactic
clauses

A Small Imperative Language (cont)
• Semantic domain

       . . .

• Semantic Functions

P: Program → Nat → Nat⊥

   P[C.] = λn. let s = (update[A] n newstore) in

  let s’ = C[C]s in (access[Z] s’ )

C: Command → Store⊥ → Store⊥

    C[C1;C2] = λs. C[C2] (C[C1]s)
    C[if B then C] = λs. B[B]s → C[C]s | s

    C[if B then C1 else C2] = λs. B[B]s → C[C1]s | C[C2]s
    C[I:=E] = λs. update [I] (E[E]s) s
    C[diverge] = λs. ⊥ 

functions
clauses
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A Small Imperative Language (cont)
• Semantic Functions (cont)

E: Expression → Store → Nat

    E[E1+E2] = λs. E[E1]s  plus  E[E2]s
    E[I] = λs. access [I] s
    E[N] = λs. ΝΝ[[Ν]]

B: Boolean-expr → Store → Tr

    B[E1=E2] = λs. E[E1]s  equals  E[E2]s
    B[¬B] = λs. not B[B]s

N: Numeral → Nat   (omitted)

note

• Truth Values
Domain t ∈ Tr = B
Operations
    true, false: Tr
    not: Tr → Tr

• Identifiers
Domain  i ∈ Id = Identifier

• Natural numbers
Domain  n ∈ Nat = N
Operations
    zero, one, …: Nat
    plus: Nat x Nat → Nat
    equals: Nat x Nat → Tr

Semantic Domain

Zero order function
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• Store
Domain s ∈ Store = Id → Nat
Operations
    newstore: Store

newstore = λi. zero
    access: Id → Store → Nat

 access = λi. λs. s(i)
    update: Id → Nat → Store → Store

 update = λi. λn. λs. [i → n]s

Semantic Domain (cont)


