Functional Languages

Functional Languages (Applicative, value-
oriented)

Importance?
* Inther pureform they dispense with ndion d assignment
— clam is: it'seasier to program in them
— daso: easier to reason abou programs written in them
» FPL'sencourage thinking at higher levels of abstradion
— support modifying and combining existing programs
— thus, FPL's encourage programmers to work in unitslarger than
statements of conventional languages: "programming in the large"

* FPL'sprovide aparadigm for parallel computing
— absence of assgnment (single assgnment) } provide basis
— independence of evauation ader } for paralle
— ability to operate on entire data structures } functional programming

|mportance of Functional Languages...

» Vauable in developing executable spedficaions and
prototype implementations
— Simple underlying semantics
* rigorous mathematical foundations
« ability to operate on entire data structures
=> ideal vehiclefor capturing specifications
« Utility to Al
— Most Al dorein func langs (extensibility. symbolic manipulation)
* Functional Programmingistied to CS theory
— provides framework for viewing decidability questions
¢ (both programming and computers)
— Goodintroduction to Denatational Semantics
« functiond in form

Expressons

» Key pupose of functional programming:
— to extendthe advantages of expressons (over statements) to an entire
programming language
» Backus ("78 FP paper) has said that expressions and statements
come from two different worlds.

— expressions. (a+b)*c arithmetic
(a+b)=0 relational
=(alb) bodean

— statements: the usual asortment with assgnment singled ou
— assignments alter the state of a computation (ordering isimportant)
eg. a=a*i; i=i+l
* Incontrast, ordering d expressionsis nat side-eff eding and
therefore not order dependent (Church-Rosser property /Church
Diamond)

More Expressions

e With Church-Rosser
— reasoning about expressionsis easier
— order independence supparts fine-grained parallelism
— Diamond poperty is quite useful
» Referential transparency
— Inafixed context, the replacement of a subexpresson by itsvalueis
completely independent of the surroundng expresson
* having once evaluated an expresgon in a given context, shoudn't
have to do it again.
Alternative: referential transparency is the universal ability to
substitute equals for equals (useful in common subexpression
optimizations and mathematical reasoning)

Hoare's Principles of Structuring
(1973 "Hints on Programming Languege Design," Stanford Tech Rep)

1) Transparency of meaning
— Meaning d whole expresgon can be understoodin termsof meanings
of its subexpressons.

2) Transparency of Purpose
— Purpose of each part consists lely of its contribution to the purpose of
thewhoe. =) No side dfects.

3) Independence of Parts
— Meaning d independent parts can be understood completely
independently.
e InE + F, E can be understoodindependently of F.

Hoare's Principles of Structuring

4) Recursive Application

— Both construction and analysis of structure (e.g. expressons) can be
accomplished through recursive gplication of uniform rules.

5) Narrow Interfaces

— Interface between partsisclear, narrow (minimal number of inputs
and outputs) and well controlled.

6) Manifestness of Structure

— Structura relationships among parts are obvious. e.g. one expression
is subexpression of another if the first istextually embedded in the
second Expressons are unrelated if they are not structurally related.

Properties of Pure Expressons

» Vaueisindependent of evaluation ader

» Expressions can be evaluated in perall el

* Referential transparency

* No side-effects (Church Rosser)

* Inpusto an expression are obvious from written form
» Effedsof operation are obvious from written form

— Med Hoare's principles well

— Goodattributes to extend to all programming (?)

A Scheme Continuation

(set init-rand (lanbda (seed)
(lambda () (set seed (nmod (+ (* seed 9) 5) 1025)))))

(set rand (init-rand 1))

» Sequenceof cdlsto (rand) produces a changing set of values
» So much for referential transparency...

Basic Data Typesin Applicaion Languages

» Atomic datatypes

-Integers |} 0+, -, x, =, /[, =,
-Reals R } #,< g > 2

- Strings =, £

IN
Vv
v

-Bodean B =, #,<,

Composite Data Types

» Seguences (a generic data type)

e.g. <CS655, 'CS654, 'CS851>
< <CS655, 'CS851>, < 'CS654 > >

-- can have subsequences to any depth as longas subsequences are
matching type.

i.e. <'CS655> #'CS655

* "sequence' by itself isnat atype
— type of a sequence determined by its components
Sequence(l) = sequence of integer
Sequence(R) = sequence of real, ec.

(continue) Data Types

» Notational convenience concerning sequences.
T means equenceof objeds of type T
e.g. I" is squenceof integers.
» Typical operations on sequences -
1) constructors. buld sequences from comporents
2) selectors: seled elements from a sequence
3) discriminators: distinguish among dfferent classes of
sequences. e.g. empty vs. non-empty.
- Would like to:
a) minimizeoverall set

b) have set be complete (in sense that functional
composition can creae any ather operation)

(continue) Data Types

» Traditional FPL constructors, seledors and dscriminators:
constructors: NIL, prefix (Cons)
seledors. first (car), rest(cdr)
discriminators; Null, = Null

 Comments abou domains;
1) firgt, rest: nat defined onnul sequences | partigl

or atoms functions
2) Null: nat defined onatoms

Archetypes

* (sequence example, next dlide)

» Archetype: ided charaderization
— ascorntrasted with prototypes
archetype: what you want
prototype: showsfeasibility (implementability)
» Archetypestendto bewritten using algebraic spedficaion
— for syntax and semantics
— aso, often include pragmatics. comments on efficiency

Infinite Sequences Archetype

» Syntax:
nil O
nul: ™ _ B Primitive function signatures,
_ domain - range
first: T - 1
rest: T L T - generic (palymorphic)
- partial
prefix: TX 1% - T*
x:S = prefix (x,) Rewrite
<> = nil rules

<x1,X2, ..., Xxn> = Xx1:<X2, ..., Xxn>

Infinite Sequences Archetype (cont)

e Semantics

nil O 1* x:SOt* Existence
7 0 T*, otherwise endienrs

null nil =true null (x:S) =false
first nil = x first (x:S) = x Equations
restnil #S rest (x:5) =S

* Pragmatics:

— Thefirgt, rest, prefix and null operations all take @nstant time.
The prefix operationis sgnificantly slower than the others.

Notes on Sequence Archetype

A <Xy, Xgeww Xy > o Xp < Xppeew X >
- Xy Xy Xg... DX, NIL

b) domains, ranges and signatures are important concepts
c) defined functions are generic

d) defined functions are partial
- First, rest dont work on nul sequences

More on Sequence Archetype
nil 071
Xx: SsoOrtr

z OT1T otherw se

« tellsusthat members of sequencetype1* include NIL, and
every result of prefix operation: x:S

e z[O T° otherwise -- means nathing elseisincluded in
type T

rest(x:S) = S } define equivalencerelations
first(x : S) X } onwell-formed formulae

u formuIaI
-
equationl

Compl eteness and Consistency

» Semantic equations are complete if they are sufficient to
either prove or disprove every well-formed equation
between formulae

— eg.if Null NIL = TRUE had been omitted from sequences
specification then we would have not been able to prove from
other equations whether

Null NIL = TRUE
or Null NIL # TRUE

» Consistency: No two equations contradict
— Inshort, don’t want to be able to prove both Sand -Sfor any S
— eg.if wehad bah Null NIL = TRUE
Null NIL =FALSE
- could prove TRUE = FALSE from Null NIL = Null NIL
- contradicts Boolean archetype

Boolean Archetype (partial)

» Syntax

* Semantics:
x OB if and orly if x =true or x = false

true# false
- true=false
- false=true

Handout...

10

Compl eteness and Consistency (cont)

» Consistency of aspedficaion can be shown byimplementingit.
— Existence of amodel is proof of consistency

— Show that every primitive operation defines a unique output for every
allowable input.

» Completenessis much more difficult. To establish completeness,
one must speafy behavior of opertions onall inpus.
— eg.inceseof firstandrest, for dl xX’'sandall S's:
first NIL # x -- first NIL is not an element
& restNIL#S -- rest NIL isnot a sequence

— use# since saying “first NIL isundefined” allows usto write
first NIL = 1/0 -- not something we want to al ow.

— Thus, # is used to mean “undefined.”

Infinite Sequences

* What if we want to spedfy the sequence:
510,13 1,7,1,7,1,7,... ?

» Do the spedficaions given ealier alow this?

Consider thesequence C=<0,0,0, ...>
— IsC alegal sequence?

Recall we have:
nil 0Tt
x: sort
z O 1T otherw se

11

Infinite Sequences Archetype

» Syntax:
nil O
nul: ™ _ B Primitive function signatures,
_ domain - range
first: T - 1
rest: T L T - generic (palymorphic)
- partial
prefix: TX 1% - T*
x:S = prefix (x,) Rewrite
<> = nil rules

<x1,X2, ..., Xxn> = Xx1:<X2, ..., Xxn>

Infinite Sequences Archetype (cont)

Semantics:;

nil O 1* x:SOt* Existence
7 0 T*, otherwise endienrs

null nil =true null (x:S) =false

first nil = x first (x:S) = x Equations
restnil #S rest (x:5) =S

Pragmatics:

— Thefirgt, rest, prefix and null operations all take @nstant time.
The prefix operationis sgnificantly slower than the others.

12

Infinite Sequences (cont)
» ConsideringC =0:C vyields

corifodland COI*
COl* otherwise

wel.. 0Oland COI" iff COI

We @n consistently assume it either is or is not.
) sequence achetype isincomplete

e Aside assuming C O " works okay in ather axioms:
firstC=0, retC=C, 0C=C
null C =null (0:C) =false, etc.

Finite Sequences
» Syntax:
nil O t*

nul: ™ - B

first T - 1 Primitive function signatures,

rest: ¢ o T* domain - range

prefix: TX 1% - T*

length: T -~ N <—— Finite, natural numbers
x:S =) prefix (x, S)
<> = nil

<x1, X2, ..., Xxn> —> X1:<x2, ..., Xn>

rules

Rewrite

13

Finite Sequences (cont)

* Semantics:
nil O x:SQOrt* } Existence
z 0 T*, otherwise axioms |
null nil =true null (x:S) =false
first nil # x first (x:S) = x Equations
restnil #S rest (x:5) =S
length nl =0 length (x:S) = 1 + length(S)
length isatotal function ont*
* Pragmatics:

— Thefirgt, rest, prefix and null operations all take @nstant time.
The prefix operationis sgnificantly slower than the others.

Length takestime & most proportional to length of argument

Operations on Sequences

» Concaenation
ca: tUx td -
e.g. ca (<1,2><3,4,5>) =<1,2,34,5>

* Reductions
sum: R* - R
e.g. sum(<1,2,3,4,5>) =15
max: R* - R
e.g. max(<1,2,34,5>) =5

* Mappings...

14

Finite Sets

e Handaut...

Higher Order Functions

* Defs:
— zero-order functions; datain the traditional sense.

— first-order functions: functions that operate on zero-order

functions.
eg. FIRST: " > 1
REST: t@ - t©

— second-order functions: operate onfirst order
eg. map: (D - R) -~ (DY~ RY 0D, Rtype
uncurried: (D - R)xD") - R*

15

Higher Order Functions (cont)

* In general, higher-order functions are thaose that can
operate on functions of any order as longas types match.

— HOF's are usualy padymorphic

» Higher-order functions can take other functions as
arguments and produce functions as values.

* More defs:
— Applicative programming has often been considered the
applicaion d first-order functions.
— Functional programming has been considered to include
higher-order functions: functionals.

Functional Programming

» Functional programming all ows functional abstraction
that is not supported in imperative languages, namely
the definition and use of functions that take functions
as arguments and return functions as values.

— suppats higher level reasoning

— gimplifies correanessproofs

16

Functional Abstraction

For an arbitrary function, f, and sequence, S, we can define:

mapf S= NIL, if null S
deef(first S): mapf (rest S)

— map is atwo-argument function
e mapisappliedtof
« resulting functionisappliedto S

map f S signature:

map: [(D - R)xD*] - R -- uncurried
map: (D - R) - (D" - R) OD,ROtype --curried

map takes afunctionthat mapsfrom D to R and yieldsa
function that maps from D" to R*. (Note, independent of S)

Functional Abstraction (cont)

Functional abstraction includes giving meaningto ‘map f '
independent of S.

In general, for any functional equation:
Fx=E
we @n, throughfunctional abstradion, modify to:

F=x —E
- where x isarbitrary and dees not occur in F

- (x—E means "taking xinto E”)
e.g. x taken into X - 3ameans x's are the same - recdl A calculus

17

Functional Abstraction (cont)
* We ca rewrite map as:

mapf=Se NIL, if null S
elsef(firstS) : map f(rest S)

\ the high order

function we seek

* In Scheme:
(define (map 1)
(lambda (S)
(IF (null 2 S) nil
(cons (f (car S))((map f) (cdr §)))))

could call map with: ((map sin) (interval 0 90))

Map Archetype
Syntax:
map: (T - U) - (T* - U*),fordl T, U Otype
Semantics:
map f nil = nil

mapf(x:S)=fx:mapf S

Pragmatics:

with sequentia implementations map f S takes linea time; on
some parallel implementations it takes constant time.

Prototype:
s { nil, if null S
mapt= elsef (first S) : map f (rest S)

18

Filtering
» Consider:
positives<3, -2, 6, -1, -5, 8, 9> =<3, 6, 8, 9>
nil, if null S
positives S= first S: positives (rest S) if first S>0
else positives (rest S)
» Let'sgeneralize and consider a general filtering function:

nil, if nul S
filP= S ~ < firstS:fil P(restS)if P(firstS)
elsefil P(rest S)

A Scheme Filter

(define (fil P)
(lambda (S)
(cond((null S) NIL)

((P(car S)) (cons(car S) ((fil P) (cdr S))))
(else((fil P) (cdrS))))))

19

Filter Archetype

Syntax:

fil: (T > B) - (T* - T*),fordl TOtype
Semantics:

fil P nil = nil

filP(x:S=x:fil P S if Px=true

filP(x:8) =fil P S, if Px=false
Pragmatics:

with a sequential implementation fil P Stakes linea time; with
some parallel implementations it takes constant time.

Prototype:

nil, if null S
filP= S first S: fil P (rest S) if P (first S)
elsefil P (rest S)
Sequences and Sets

» A typical prototype for the finset archetype akiom:
xO(SnT)=xOSOxOT

@if empty S

SNnT= elseadjoin (first S,restS n T) if firss SO T
eserestS nT

—> if we use sequences to represent sets then we must prove
that we have true set operators.

* Proof can belengthy, but HO functions can help.

20

A Note on Corredness

» Proving properties abou functionals smplifies subsequent
proofs where functionals are used:

eg.toprove xOfil PS=PxOx0OS (A)

— x amember of the sequence produced by applying fil Pto Sis equivalent
to the truth of Px and x amember of the sequence S.

* Threelemmatato prove:

DxOflPS - xOS -- fil doesn't add any elements

AxOfilPS - Px -- x only added to seq if Px true | | Prove

Y xOSOPx - xOfil P S--fil cgptures all membersof S orce
that satisfy P

(note: 1 & 2 gve — and 3gives —, proving (A)

More on Correctness

o Consider
P=0S (test for membership)
then:

fil [DS] T producesthe sequence of elementsthat are
members of both S& T (which are sequen(ri)

.
-
that is: \
SAT=f[O0ST - by definition ©)

21

Continue Correctnessof Set Intersection

» SO corredness of set intersedion:
xO(SnT)=xOSOxOT -- from finite set archetype
can be demonstrated by:
xO(SnT) =x0Ofil[O9T -- from (C)
=[0Sx OxOT --from(A)
=xQgsSOxdT o

» (This proaf showsthat a sequenceimplementation o a set can
satisfy a set archetype)

Composition Archetype

Syntax:
(S ->T)Xx(R-9] > (R - T),fordl R, S T0Otype
thatis,(f °g:R - T for ST andggR - S

Semantics:
(f°g)x="f(gx)
Pragmatics:
Composition takes the same time as the compaosed functions.

Prototype:
f°g=s x » f(gx

22

Construction Archetype

Syntax:
[FI(S->T) x(S- U)] - [(S- (TxU)],foral ST,U Otype
thatis, (f; 9):S— (TxU), for :S- T and g S U.
(f; T .05 1) (f; (F; .. .5 1))
Semantics:
(figx=(Fxgx
Pragmatics:

With sequential implementations, n-ary construction takes the sum
of the times of the mnstructed functions. With some parall e
implementations it takes the time of the slowest function.

Prototype:
f;g= x » (fX,gXx)

Haskell & ML: Interesting Features

» Typeinferencing

» Freedom from side dfeds

 Pattern matching

» Polymorphism

» Suppat for higher order functions

o Lazy patterns/ lazy evaluation

» Suppat for object-oriented programming

23

Type Inferencing

» Def: ahility of the language to infer types withou having
programmer provide type signatures.

— SML eg.

fun mn (a: real, b)
= if a > b
then b

else a

— typeof ahasto be given, but then that's sufficient to figure out
e typeof b
* typeof min
— What if type of aisnat spedfied?
- could beints
- could be bods...

Type Inferencing (cont)

» Haskell (aswith ML) guarantees type safety
— Haskell example:

eq = (a=0b

— apdymorphic function that has a return type of bod,

« asumesonly that its two arguments are of the same type and can
have the equality operator applied to them.

— ML has smilar assumption, for what it cal s equality types.

» Overuse of typeinferencingin bah languages is discouraged
— declarations are adesignaid
— declarations are adocumentation aid
— declarations are adebuggng aid

24

Polymorphism

ML:

fun factorial (0)

1
= | factorial (n) = n* factorial (n - 1)

— ML infersfactoria isan integer function: int ->int

Haskell :

factorial (0) = 1
factorial (n) = n * factorial (n - 1)

— Haskel infersfactorial isa (numerical) function: Numa=>a->a

Polymorphism (cont)

ML:
fun nymax(x,y) = if x >y then x else y

— SML infers mymax is an integer function: int -> int

fun nymax(x: real ,y) =if x >y then x else y
— SML infersmymax isred

Haskell :

mymax(x,y) = if x >y then x else y

— Haskdl infersfactoria isan Ord function

25

