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Functional Languages

Functional Languages (Applicative, value-
oriented)

Importance?

• In their pure form they dispense with notion of assignment
– claim is: it's easier to program in them

– also: easier to reason about programs written in them

• FPL's encourage thinking at higher levels of abstraction
– support modifying and combining existing programs

– thus, FPL's encourage programmers to work in units larger than
statements of conventional languages: "programming in the large"

• FPL's provide a paradigm for parallel computing
– absence of assignment (single assignment)    }  provide basis

– independence of evaluation order                   }  for parallel

– ability to operate on entire data structures      }  functional programming
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Importance of Functional Languages…
• Valuable in developing executable specifications and

prototype implementations
– Simple underlying semantics

• rigorous mathematical foundations

• ability to operate on entire data structures

       => ideal vehicle for capturing specifications

• Util ity to AI
– Most AI done in func langs (extensibility. symbolic manipulation)

• Functional Programming is tied to CS theory
– provides framework for viewing decidability questions

• (both programming and computers)

– Good introduction to Denotational Semantics

• functional in form

Expressions
• Key purpose of functional programming:

– to extend the advantages of expressions (over statements) to an entire
programming language

• Backus ('78 FP paper) has said that expressions and statements
come from two different worlds.
– expressions:     (a + b) * c             arithmetic

                          (a + b) = 0             relational

                         ¬(a ∨ b)                boolean

– statements: the usual assortment with assignment singled out

– assignments alter the state of a computation (ordering is important)

                        e.g.    a:= a * i;     i:= i + 1

• In contrast, ordering of expressions is not side-effecting and
therefore not order dependent (Church-Rosser property /Church
Diamond)
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More Expressions
• With Church-Rosser

– reasoning about expressions is easier

– order independence supports fine-grained parallelism

– Diamond property is quite useful

• Referential transparency
– In a fixed context, the replacement of a subexpression by its value is

completely independent of the surrounding expression

• having once evaluated an expression in a given context, shouldn’ t
have to do it again.

Alternative: referential transparency is the universal ability to
substitute equals for equals (useful in common subexpression
optimizations and mathematical reasoning)

Hoare's Principles of Structuring
(1973, "Hints on Programming Language Design," Stanford Tech Rep)

1) Transparency of meaning
– Meaning of whole expression can be understood in terms of   meanings

of its subexpressions.

2) Transparency of Purpose
– Purpose of each part consists solely of its contribution to the purpose of

the whole. No side effects.

3) Independence of Parts
– Meaning of independent parts can be understood completely

independently.

• In E + F, E can be understood independently of F.
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Hoare's Principles of Structuring

4) Recursive Application
– Both construction and analysis of structure (e.g. expressions) can be

accomplished through recursive application of uniform rules.

5) Narrow Interfaces
– Interface between parts is clear, narrow (minimal number of inputs

and outputs) and well controlled.

6) Manifestness of Structure
– Structural relationships among parts are obvious.  e.g. one expression

is subexpression of another if the first is textually embedded in the
second. Expressions are unrelated if they are not structurally related.

Properties of Pure Expressions

• Value is independent of evaluation order

• Expressions can be evaluated in parallel

• Referential transparency

• No side-effects (Church Rosser)

• Inputs to an expression are obvious from written form

• Effects of operation are obvious from written form

   →  Meet Hoare's principles well

   → Good attributes to extend to all programming  (?)
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A Scheme Continuation

(set init-rand (lambda (seed)

  (lambda () (set seed (mod (+ (* seed 9) 5) 1025)))))

(set rand (init-rand 1))

• Sequence of calls to (rand) produces a changing set of values

• So much for referential transparency…

Basic Data Types in Application Languages

• Atomic data types

    - Integers    I    }      + ,   - ,   x ,   ÷ ,   / ,  = ,

    - Reals       R    }     ≠ , <,  ≤,  >,  ≥

    - Strings                = ,   ≠

    - Boolean     B          = ,   ≠ , <,  ≤,  >,  ≥
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Composite Data Types

• Sequences (a generic data type)

   e.g. <'CS655', 'CS654', 'CS851'>

           < <'CS655', 'CS851'>, < 'CS654’> >

         -- can have subsequences to any depth as long as subsequences are
matching type.

                         i.e.  <'CS655'> ≠ 'CS655'

• "sequence" by itself is not a type
– type of a sequence determined by its components

                 Sequence(I ) = sequence of integer

                    Sequence(R) = sequence of real,    etc.

(continue) Data Types
• Notational convenience concerning sequences:

       τ*  means sequence of objects of type τ
           e.g. I* is sequence of integers.

• Typical operations on sequences -

      1) constructors:  build sequences from components

      2) selectors: select elements from a sequence

      3) discriminators: distinguish among different classes of

                                    sequences.  e.g. empty vs. non-empty.

         → Would like to:

                 a) minimize overall set

                 b) have set be complete  (in sense that functional
composition can create any other operation)
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(continue) Data Types

• Traditional FPL constructors, selectors and discriminators:

       constructors:    NIL,   prefix (Cons)

       selectors:       first (car),   rest (cdr)

       discriminators:  Null ,   ¬ Null

•  Comments about domains:

       1) first, rest:   not defined on null sequences

      or atoms

       2) Null:          not defined on atoms

Partial
functions

• (sequence example, next slide)

• Archetype: ideal characterization

– as contrasted with prototypes

       archetype: what you want

       prototype: shows feasibilit y (implementability)

• Archetypes tend to be written using algebraic specification

– for syntax and semantics

– also, often include pragmatics:  comments on eff iciency

Archetypes
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• Syntax:

nil ∈ τ*

null : τ* → B

first: τ* → τ

rest: τ* → τ*

prefix: τ x τ* → τ*

x:S          prefix (x, S)

< >         nil

<x1, x2, …, xn >          x1 : <x2, …, xn>

Infinite Sequences Archetype

Primitive function signatures;
    domain → range

- generic (polymorphic)
- partial

Rewrite
  rules

• Semantics:

nil ∈ τ* x : S ∈ τ*

z ∉ τ* , otherwise

null nil = true null (x:S) = false

first nil ≠ x first (x:S) = x

rest nil ≠ S rest (x:S) = S

• Pragmatics:

– The first, rest, prefix and null operations all take constant time.

The prefix operation is significantly slower than the others.

Infinite Sequences Archetype (cont)

Existence
  axioms

Equations
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    a)    < x1,  x2,...  xn >  →  x1 : < x2,...  xn >

                                       →  x1 : x2 : x3 ...  : xn : NIL

    b) domains, ranges and signatures are important concepts

    c) defined functions are generic

    d) defined functions are partial

         - First, rest don't work on null sequences

Notes on Sequence Archetype

nil ∈ τ*

x : S ∈ τ*
z ∉ τ*  otherwise

• tells us that members of sequence type τ* include NIL, and
every result of prefix operation:     x : S

• z ∉  τ*   otherwise  -- means nothing else is included in
type τ*

    rest(x : S)     =    S         }  define equivalence relations
    first(x : S)    =    x         }  on well -formed formulae

More on Sequence Archetype

formula

equation
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Completeness and Consistency
• Semantic equations are complete if they are sufficient to

either prove or disprove every well-formed equation
between formulae
– e.g. if  Null NIL = TRUE had been omitted from sequences

specification then we would have not been able to prove from
other equations whether

Null NIL = TRUE

or Null NIL ≠ TRUE

• Consistency:  No two equations contradict
– In short, don’ t want to be able to prove both S and ¬S for any S

– e.g. if we had both     Null NIL = TRUE

   Null NIL = FALSE

    - could prove TRUE = FALSE from Null NIL = Null NIL

   - contradicts Boolean archetype

• Syntax

. . .

• Semantics:

  x ∈ B if and only if x = true or x = false

true ≠ false

¬ true = false

¬ false = true

  . . .

Handout...

Boolean Archetype (partial)
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Completeness and Consistency (cont)
• Consistency of a specification can be shown by implementing it.

– Existence of a model is proof of consistency

– Show that every primitive operation defines a unique output for every
allowable input.

• Completeness is much more difficult.  To establish completeness,
one must specify behavior of opertions on all inputs.
– e.g. in case of first and rest, for all  x’s and all S’s:

first NIL ≠ x -- first NIL is not an element

& rest NIL ≠ S -- rest NIL is not a sequence

– use ≠ since saying “ first NIL is undefined” allows us to write
first NIL = 1/0 -- not something we want to allow.

– Thus, ≠ is used to mean “undefined.”

Infinite Sequences
• What if we want to specify the sequence:

                5, 10, 13, 1, 7, 1, 7, 1, 7, ...     ?

• Do the specifications given earlier allow this?

• Consider the sequence:    C = <0, 0, 0, ... >
– Is C a legal sequence?

• Recall we have:

nil ∈ τ*

x : S ∈ τ*

z ∉ τ*  otherwise
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• Syntax:

nil ∈ τ*

null : τ* → B

first: τ* → τ

rest: τ* → τ*

prefix: τ x τ* → τ*

x:S          prefix (x, S)

< >         nil

<x1, x2, …, xn >          x1 : <x2, …, xn>

Infinite Sequences Archetype

Primitive function signatures;
    domain → range

- generic (polymorphic)
- partial

Rewrite
  rules

• Semantics:

nil ∈ τ* x : S ∈ τ*

z ∉ τ* , otherwise

null nil = true null (x:S) = false

first nil ≠ x first (x:S) = x

rest nil ≠ S rest (x:S) = S

• Pragmatics:

– The first, rest, prefix and null operations all take constant time.

The prefix operation is significantly slower than the others.

Infinite Sequences Archetype (cont)

Existence
  axioms

Equations
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Infinite Sequences (cont)
• Considering C = 0:C  yields

                   C ∈ I*  if  0 ∈ I and    C ∈ I *

                            C ∉ I *  otherwise

            well ...    0 ∈ I and    C ∈ I *    iff     C ∈ I *

               We can consistently assume it either is or is not.

                              sequence archetype is incomplete

• Aside:    assuming  C ∈ I * works okay in other axioms:

                      first C = 0,    rest C = C,    0:C = C

                      null C = null (0:C) = false,   etc.

• Syntax:

nil ∈ τ*

null : τ* → B

first: τ* → τ

rest: τ* → τ*

prefix: τ x τ* → τ*

length: τ* → Ν

x:S          prefix (x, S)

< >         nil

<x1, x2, …, xn >          x1 : <x2, …, xn>

Finite Sequences

Primitive function signatures;
    domain → range

Rewrite
  rules

Finite, natural numbers
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• Semantics:

nil ∈ τ* x : S ∈ τ*

z ∉ τ* , otherwise

null nil = true null (x:S) = false
first nil ≠ x first (x:S) = x

rest nil ≠ S rest (x:S) = S

length nil = 0 length (x:S) = 1 + length(S)

length is a total function on τ*

• Pragmatics:
– The first, rest, prefix and null operations all take constant time.

The prefix operation is significantly slower than the others.

     Length takes time at most proportional to length of argument

Finite Sequences (cont)

Existence
  axioms

Equations

Operations on Sequences

• Concatenation

cat: τ∗ x τ∗ → τ∗

e.g. cat (<1,2> <3,4,5>) = <1,2,3,4,5>

• Reductions
sum: R* → R

e.g. sum( <1,2,3,4,5>) = 15

max: R* → R
e.g. max( <1,2,3,4,5>) = 5

. . .

• Mappings...
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Finite Sets

• Handout...

Higher Order Functions

• Defs:
– zero-order functions:  data in the traditional sense.

– first-order functions: functions that operate on zero-order
functions.

          e.g. FIRST: τ∗ → τ
                 REST:  τ∗ → τ∗

– second-order functions: operate on first order

          e.g. map: (D → R) → (D∗ → R∗)   ∀ D, R ∈ type

                        uncurried:       ((D → R) x D* ) → R*
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Higher Order Functions (cont)

• In general, higher-order functions are those that can
operate on functions of any order as long as types match.
– HOF's are usually polymorphic

• Higher-order functions can take other functions as
arguments and produce functions as values.

• More defs:
– Applicative programming has often been considered the

application of f irst-order functions.

– Functional programming has been considered to include
higher-order functions: functionals.

Functional Programming

• Functional programming allows functional abstraction
that is not supported in imperative languages, namely
the definition and use of functions that take functions
as arguments and return functions as values.

–  supports higher level reasoning

–  simpli fies correctness proofs
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Functional Abstraction

• For an arbitrary function, f, and sequence, S, we can define:

                      NIL, if null S

else f(first S) : map f  (rest S)

– map is a two-argument function

• map is applied to f

• resulting function is applied to S

• map f S  signature:

                       map: [(D → R) x D* ] → R* -- uncurried

                       map: (D → R) → (D* → R*)   ∀ D, R ∈ type -- curried

• map takes a function that maps from D to R and yields a
function that maps from D* to R*.  (Note, independent of S)

map f S ≡

• Functional abstraction includes giving meaning to 'map f '
independent of S.

• In general, for any functional equation:

                 Fx = E

     we can, through functional abstraction, modify to:

                 F = x       E

        - where x is arbitrary and does not occur in F

  - ( x     E means "taking x into E” )

            e.g. x taken into x2 - 3a means x's are the same - recall λ calculus

Functional Abstraction (cont)
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Functional Abstraction (cont)

• We can rewrite map as:

                      NIL, if null S

else f(first S) : map f(rest S)

* In Scheme:

       (define (map f)

                (lambda (S)

                  (IF (null? S) nil

                      (cons (f (car S))((map f) (cdr S)) )) ))

  could call map with: ((map sin) (interval 0 90))

map f ≡ S  

the high order
function we seek

Map Archetype

Syntax:
map: (T → U ) → (T * → U* ) , for all T, U ∈ type

Semantics:
map f nil = nil
map f (x : S) = f x : map f  S

Pragmatics:
with sequential implementations map f S takes linear time; on
some parallel implementations it takes constant time.

Prototype:
nil , if null S

     else f (first S) : map f (rest S)
map f ≡   S
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Filtering

• Consider:

     positives <3, -2, 6, -1, -5, 8, 9> = <3, 6, 8, 9>

                      nil , if null S

     positives S ≡ first S : positives (rest S) if first S > 0

 else positives (rest S)

• Let's generalize and consider a general fil tering function:

nil , if null S

     fil  P ≡   S first S : fil  P (rest S) if P (first S)

else fil P (rest S)

A Scheme Filter

        (define (fil  P)

                (lambda (S)

                    (cond ((null S) NIL)

                             ((P (car S)) (cons (car S) ((fil  P) (cdr S) )))

                             (else ((fil  P) (cdr S))   ))   ))



20

Filter Archetype
Syntax:

fil : (Τ → Β ) → (Τ * → Τ * ) , for allΤ ∈ type
Semantics:

fil  P nil = nil
fil  P (x : S) = x : fil  P  S,  if Px = true
fil  P (x : S) = fil  P  S,  if Px = false

Pragmatics:
with a sequential implementation fil  P S takes linear time; with
some parallel implementations it takes constant time.

Prototype:
nil , if null S

     fil  P ≡   S first S : fil  P (rest S) if P (first S)
else fil P (rest S)

Sequences and Sets

• A typical prototype for the finset archetype axiom:

       x ∈ (S ∩ T) = x ∈ S ∧  x ∈ T

     is:

φ if empty S

           S ∩ T = else adjoin (first S, rest S  ∩ T) if first S ∈ T

else rest S  ∩ T

• Proof can be lengthy, but HO functions can help.

if we use sequences to represent sets then we must prove
that we have true set operators.
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A Note on Correctness

• Proving properties about functionals simpli fies subsequent
proofs where functionals are used:

     e.g. to prove:  x ∈ fil P S = Px ∧ x ∈ S (A)

–  x a member of the sequence produced by applying fil P to S is equivalent
to the truth of Px and x a member of the sequence S.

• Three lemmata to prove:

    1) x ∈ fil  P S → x ∈ S -- fil  doesn't add any elements

    2) x ∈ fil  P S → Px -- x only added to seq if Px true

    3) x ∈ S ∧ Px → x ∈ fil P S -- fil captures all members of S

                                                      that satisfy P

          (note: 1 & 2 give → and 3 gives ←, proving (A)

Prove
 once

More on Correctness

• Consider

    P ≡ ∈ S          (test for membership)

     then:

         fil  [∈ S] T

     that is:

         S ∩ T ≡ fil  [∈ S] T -- by definition            (C)

produces the sequence of elements that are
members of both S & T (which are sequences)
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Continue Correctness of Set Intersection

• So correctness of set intersection:

       x ∈ (S ∩ T) = x ∈ S ∧  x ∈ T -- from finite set archetype

    can be demonstrated by:

           x ∈ (S ∩ T) = x ∈ fil  [∈ S] T -- from (C)

                  = [∈ S] x  ∧  x ∈ T -- from (A)

                  = x ∈ S ∧  x ∈ T

• (This proof shows that a sequence implementation of a set can
satisfy a set archetype)

Composition Archetype

Syntax:
°: [(S  → T )  x (R → S)] → (R  → T ) , for all R, S, T ∈ type

      that is, (f  ° g): R  → T   for  f: S → T   and  g: R → S

Semantics:
 (f  ° g) x = f (g x)

Pragmatics:
Composition takes the same time as the composed functions.

Prototype:
 f  ° g ≡   x  f (g x)
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Construction Archetype

Syntax:
  [;]: [(S → T )  x (S→ U)] → [(S → (T x U )] , for all S, T, U ∈ type
      that is, (f ; g): S → (T x U ),  for  f: S → T   and  g: S →  U.
      (f1; f2; . . . ; fn)       (f1; (f2; . . . ; fn))

Semantics:
 (f  ; g) x = (f x, g x)

Pragmatics:
With sequential implementations, n-ary construction takes the sum
of the times of the constructed functions.  With some parallel
implementations it takes the time of the slowest function.

Prototype:
 f  ; g ≡   x  (f x, g x)

Haskell  & ML: Interesting Features

• Type inferencing

• Freedom from side effects

• Pattern matching

• Polymorphism

• Support for higher order functions

• Lazy patterns / lazy evaluation

• Support for object-oriented programming
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Type Inferencing

• Def:  abil ity of the language to infer types without having
programmer provide type signatures.

– SML e.g.:

fun min (a: real,  b)

=  if  a  >  b

then  b

else  a

– type of a has to be given, but then that’s sufficient to figure out
• type of b
• type of min

– What if type of a is not specified?
- could be ints
- could be bools...

Type Inferencing (cont)

• Haskell  (as with ML) guarantees type safety

– Haskell  example:

eq  =  (a = b)

– a polymorphic function that has a return type of bool,
•  assumes only that its two arguments are of the same type and can

have the equality operator applied to them.

– ML has similar assumption, for what it calls equality types.

• Overuse of type inferencing in both languages is discouraged
– declarations are a design aid
– declarations are a documentation aid
– declarations are a debugging aid
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Polymorphism

• ML:

fun factorial (0)  =  1

= | factorial (n)  =  n * factorial (n - 1)

– ML infers factorial is an integer function:  int -> int

• Haskell :

factorial (0)  =  1

factorial (n) = n * factorial (n - 1)

– Haskell infers factorial is a (numerical) function:  Num a => a -> a

Polymorphism (cont)

• ML:

fun mymax(x,y) = if x > y then x else y

– SML infers mymax is an integer function:  int -> int

fun mymax(x: real ,y) = if x > y then x else y

– SML infers mymax is real

• Haskell :

mymax(x,y) = if x > y then x else y

– Haskell infers factorial is an Ord function


