Design byContract

The God

* Ensure the corrednessof our software
(corredness

» Recover when it is not corred anyway
(robustness

» Correctness Assrtions
» Robustness Exception handling

» DBC: Relationship between classand client
is aformal agreement




What GoodIs It?

Aid in documentation

Aid in debugging

Reliability (construct correct programs)
Example: Ariane 5 crash, $500 million loss
— Conversion from a 64 it #to 16 hit

— The number didn’t fit in 16 kts

— Analysis had previously shown it would, so
monitoring that assertion was turned off

Software Correctness

Someone showsyoua 300K lineC
program. Isit correct?

What's correct?

Y ou need a specification.

Consider:x= y +1;

Possble spedfications:

—“Make sure x and y have different values’

— “Make sure x has anegative value’ (incorrect!)




Expressing a Specification:
Assertionsin C
assert (x<0);
Bodean expresson
Ignored unlessin DEBUG mode

If true, proceed, if false, abort

Can get varying behavior in DEBUG and
non-debug modes

Eiffel givesyou fine grained control on
which assertions get checked

Expressing a Specificaion

Correctnessformulae (Hoare triples)

—-{P} A {Q}

—{x> =9} foo (){x >=13}

—{Fal se}A{...} --thecaller erredjust by
causing this code to be invoked

—{...} A {True} --Mustterminate




Precondtions and Postcondtions

The same idea, on a per-method basis
Input requirements: preconditions
Output requirements:. postconditions

preconditions. Caller’s promise to the
method

postconditions: Method' s promise to the
caller

Example

cl ass MyStack [G] feature
count: INTEGER
push(x: G) is
require
not full
do
... -- code to perform the push
ensure

not empty
top=x
count= old count+1

end




Contrad Benefits and Obligations

Obligations Benefits

Satisfy precondition; | From postcondition:

Only call push(x) if the Stack gets updated to be
stack is nat full. non empty, w/ x ontop,
and court increased.

Client

Satisfy postcondition: | From precondition:

. Update repr to have x on | Simpler implementation
Supplier | top, court increased by | thanks to the assumption
1, not empty. that the stack is not full.

| nvariants

o Assrtionsthat should always hdd true

e |n Eiffd, invariants have aclasswide
scope:

cl ass MyStack [G]
i nvari ant

count <= capacity
(count > 0) i mpl i es repr .item(count) = item)




| nvariants

(Sometimes) It’'s unreasonable for invariants
to always be true:

Invariant: X =y

swapping x and y would require 2 temporary
variables, and some extra code
When to suspend invariants?
—obj . method(...) must satisfy oncall and exit
— meth od(...) need nat (auxili ary tools)

Other Features of DBC

» Checkpaints
— Much like C asert statements:
check not s.empty end
* Loogp invariants and variants
— Off by 1, failure to terminate, border cases
— Don't think it’ s hard?
— Binary searchingis commonly buggy




Example Loop(gcd)

from
xi=a;y:=b
i nvari ant -- optional
x>0;y>0
vari ant -- optional
x.max(y)
unti |
X=Yy
| oop
if x>y then x:=x-y else y:=y-x end
end

Problems with DBC

e Misuse
— Contracts are part of your “interface”. Y et they
can depend on pivate data.
— Use s acontrol structure
— Usefor user input cheding
— Method bodytests for assertions
— Failing to upchte assertions
» Limitations of the as<ertion language




Eiffel’s Assertion Language

» boolean expressons, + old, etc.
* No complex formal concepts (V,3)

* Anengineaing tradeoff:
— Enoughformal elementsfor reliability gains
— Yet, keg it smple, leanable and efficient




