
1

Design by Contract

The Goal
• Ensure the correctness of our software

(correctness)

• Recover when it is not correct anyway
(robustness)

• Correctness: Assertions

• Robustness: Exception handling

• DBC: Relationship between class and client
is a formal agreement

2

What Good Is It?

• Aid in documentation

• Aid in debugging

• Reliability (construct correct programs)

• Example: Ariane 5 crash, $500 million loss
– Conversion from a 64 bit # to 16 bit

– The number didn’ t fit in 16 bits

– Analysis had previously shown it would, so
monitoring that assertion was turned off

Software Correctness

• Someone shows you a 300K line C
program. Is it correct?

• What’s correct?

• You need a specification.
• Consider: x = y + 1;

• Possible specifications:
– “Make sure x and y have different values”

– “Make sure x has a negative value” (incorrect!)

3

Expressing a Specification:
Assertions in C

• assert(x<0);

• Boolean expression

• Ignored unless in DEBUG mode

• If true, proceed, if false, abort

• Can get varying behavior in DEBUG and
non-debug modes

• Eiffel gives you fine grained control on
which assertions get checked

Expressing a Specification

• Correctness formulae (Hoare triples)
– {P} A {Q}

– {x > = 9} foo () {x >= 13 }

– {Fal se} A {…} -- the caller erred just by
causing this code to be invoked

– {…} A {True} -- Must terminate

4

Preconditions and Postconditions

• The same idea, on a per-method basis

• Input requirements: preconditions

• Output requirements: postconditions

• preconditions: Caller’s promise to the
method

• postconditions: Method’s promise to the
caller

Example
class MyStack [G] feature

 count: INTEGER

 push(x: G) is

 require

 not full

 do

 … -- code to perform the push

 ensure

 not empty

 top = x

 count = old count + 1

 end

5

Contract Benefits and Obligations

Satisfy precondition:

Only call push(x) if the
stack is not full.

Satisfy postcondition:

Update repr to have x on
top, count increased by
1, not empty.

From precondition:

Simpler implementation
thanks to the assumption
that the stack is not full.

From postcondition:

Stack gets updated to be
non empty, w/ x on top,
and count increased.

Obligations Benefits

Client

Supplier

Invariants

• Assertions that should always hold true

• In Eiffel, invariants have a class-wide
scope:

class MyStack [G]

…

invariant

 count <= capacity

 (count > 0) implies repr .item(count) = item)

6

Invariants
• (Sometimes) It’s unreasonable for invariants

to always be true:
• Invariant: x != y

• swapping x and y would require 2 temporary
variables, and some extra code

• When to suspend invariants?
– obj . method(…) must satisfy on call and exit

– meth od(…) need not (auxili ary tools)

Other Features of DBC

• Checkpoints
– Much like C assert statements:

check not s.empty end

• Loop invariants and variants
– Off by 1, failure to terminate, border cases

– Don’ t think it’ s hard?

– Binary searching is commonly buggy

7

Example Loop (gcd)
from

 x:= a; y:= b

invariant -- optional

 x>0;y>0

variant -- optional

 x.max(y)

until

 x = y

loop

 if x > y then x := x - y else y := y - x end

end

Problems with DBC

• Misuse
– Contracts are part of your “ interface”. Yet they

can depend on private data.

– Use as a control structure

– Use for user input checking

– Method body tests for assertions

– Failing to update assertions

• Limitations of the assertion language

8

Eiffel’s Assertion Language

• boolean expressions, + old, etc.

• No complex formal concepts (
�

,�)

• An engineering tradeoff:
– Enough formal elements for reliabilit y gains

– Yet, keep it simple, learnable and efficient

