
1

Automatic Memory
Management

Storage Allocation

• Static Allocation
– Bind names at compile time

– Pros:
• Fast (no run time allocation, no indirection)

• Safety : memory requirements known in advance

– Cons:
• Sizes must be known at compile time

• Data structures can’t be dynamically allocated

• No recursion

2

Storage Allocation

• Stack Allocation
– activation records (frames)

– push + pop on proc entrance / exit

– Implications:
• Recursion is possible

• Size of local data structures may vary

• Stack allocated local names can’t persist

• Can only return objects of statically known size

• Enables function pointers (no nesting though)

Storage Allocation

• Heap Allocation
– Alloc and dealloc from a heap in any order

– Advantages:
• Local data structures can outlive procedure

• Facili tates varying sized recursive data structures

• Can return dynamically sized objects

• Closures (function + environment)

3

Reachability

• What can a program manipulate directly?
– Globals

– Locals (in registers, on stack, etc)

– In C, random locations

• Root nodes

• Live nodes - pointer reachability

Problems w/ Manual Allocation

• Garbage - “unreachable” but not free

• Dangling references

• Sharing

• Failures
– Invalid accesses, out of memory errors, etc...

 c a t

b

4

Why else would we want AMM?

• Language requirements
– sharing (system does sharing to save space)

– delayed execution

• Problem requirements
– Should pop() dealloc? Sometimes…

• More abstraction, easier to understand

• Manual management is hard.

Tradeoffs

• Problem specification (hard real time)

• Costs (time + space)
– Traditionally very slow

• early 80’s - 40% of time in large LISP programs

• typical: 2-20%

5

Reference Counting

• Count the number of references to each
node

• Each mode has a field for the count (rc)

• Free nodes: rc = 0

• On referencing, rc++

• On dereferencing, rc--

• When rc returns to 0, free it.

Reference Counting

• Advantages
– Overhead is distributed

– Probably won’ t affect locality of reference

– Little data is shared, most is short-lived

• Disadvantages
– High overhead on mutator operations (rc++.rc--)

– Recursive freeing

– Can’ t reclaim cyclic structures (Why?)

6

Cyclic Structures

n

2

2

1

X

Y

Z

A

Cyclic Structures

• Look for “cycle making” references
– 2 invariants:

• active nodes are reachable from root by a chain of
“strong pointers”

• strong pointers do not form cycles

– Non termination

– Reclaiming objects prematurely

7

Mark and Sweep

• Garbage collection

• Leave stuff unreachable until a collection

• Suspend program during a collection

• Mark nodes reachable from the roots

• Sweep up the garbage

Mark and Sweep
root

8

Mark and Sweep

mark_and_ sweep:

for each R in Roots:

mark(R)

sweep()

mark(N):

 N.mark = MARKED

 for ea ch C in N.children :

 mar k(C)

Mark and Sweep

sweep():

 Free_L i st = []

 for ea ch Obj in Heap:

 if Obj .mark == UNMAR KED:

 Free_List.append(Obj)

 el se:

 Obj .mark = UNMARK ED

9

Mark and Sweep

• Advantages:
– Cycles are handled naturally

– No overhead on pointer manipulations

• Disadvantages:
– Computation halts

– Potentially long pauses (O(seconds))

– Locality

– Fragmentation

Copying Collectors (scavenging)

• Divide heap into two semi-spaces

• Allocate only into one space at a time

• On collection, copy out live data

10

Copying Collectors

Fromspace Tospace

A

B

C

D

0

1

root

Copying Collectors

Fromspace Tospace

A

B

C

D

0

1

A’

root

11

Copying Collectors

Fromspace Tospace

A

B

C

D

0

1

A’

0

B’

root

Put forwarding adress in nodes
in fromspace as we copy them

into to space

Copying Collectors

Fromspace Tospace

A

B

C

D

0

1

A’

0

B’

root

12

Copying Collectors

Fromspace Tospace

A

B

C

D

0

1

0

1 C’

D’

root

Copying Collectors

New Tospace New Fromspace

0

1

13

Copying Collectors

• Advantages:
– No fragmentation

– Only touch cells in use

– No free list

• Disadvantages:
– 1/2 your memory is always unused

– Overhead of copying

– Copy long-lived objects every time

Other Algorithms

• The previous algorithms are naïve

• Solutions for most problems:
– Incremental + Concurrent collection

– Tricolor marking
• Black: visited

• Grey: mutated, or not fully traversed

• White: untouched

– Generational collection
• collect newer spaces; not older ones

14

Garbage Collection for C/C++

• Don’ t want to recompile code

• Distinguishing pointers w/ a bit flag is bad

• Headers in general are bad

• Where are the roots?

• What are the stack/register conventions?

• Which words are pointers?

Conservative Collection

• Roots: registers, stack, static areas.

• Pointer tests:
– Does the “address” point into the heap?

– Has that heap block been allocated?

– Is the address properly aligned?
• Machine dependent

• Pointer tests on sparc: 30 instructions or so
– every time to determine if something is a ptr

