Automatic Memory
M anagement

Storage Allocation

» Static Allocation
— Bind rames at compile time
— Pros.
* Fast (noruntime dlocdion, noindiredion)
» Safety : memory requirements known in advance
— Cons:
* Sizes must be known at compil e time

 Data structures can’t be dynamicdly allocated
* No recursion

Storage Allocation

« Stadk Allocation
— adivation records (frames)
— push + pop on proc entrance / exit
— Implications:
* Recursionispassible
* Sizeof loca data structures may vary
» Stadk allocaed locd names can’t persist

» Can ony return ojeds of staticaly known size
 Enables function panters (no resting though

Storage Allocation

* Heg Allocation
— Alloc and dealloc from a heap in any order
— Advantages:
* Local data structures can ottlive procedure
* Fadlitates varying sized recursive data structures

 Can return dyramically sized oljeds
* Closures (function + environment)

Reachability

» What can aprogram manipulate diredly?
— Globals
— Locas (in registers, on stack, €etc)
—In C, randam locations

* Roat nodes

 Live nodes - pointer reachability

Problemsw/ Manual Allocation

Garbage - “unreachable” but not free
Dangling references

Sharing c a t

Failures
— Invalid accesses, out of memory errors, €etc...

Why else would we want AMM?

 Language requirements
— sharing (system does sharing to save space
— delayed execution

 Problem requirements
— Shoud pog) dedloc? Sometimes...

* More astraction, easier to understand
* Manua management ishard.

Tradeoffs

* Problem specificaion (hard red time)
» Costs (time + space)
— Traditionally very slow

» ealy 80's- 40% of timein large LISPprograms
* typicd: 2-20%

Reference Courting

Count the number of references to each
node

Each mode has afield for the count (rc)
Free nodes. rc =0

On referencing, rc++

On dereferencing, rc--

When rc returnsto O, freeiit.

Reference Courting

» Advantages
— Overhead is distributed
— Probably won't affect locdlity of reference
— Little datais shared, most is short-lived
» Disadvantages
— High overhead on mutator operations (rc++.rc--)
— Recursive freang
— Can't reclaim cyclic structures (Why?)

Cyclic Structures

Cyclic Structures

» Look for “cycle making” references

— 2 invariants;

* adive nodes are reatable from root by achain of
“strong ponters’

* strong ponters do nd form cycles
— Non termination
— Reclaming oljeds prematurely

Mark and Sweep

Garbage collection

L eave stuff unreachable until a collection
Suspend program during a collection
Mark nodes reachable from the roots
Sweeg upthe garbage

Mark and Sweep

mark_and_ sweep:
for each R in Roots:

mark(R)
sweep()
mark(N):
N.mark = MARKED
for ea ch Cin N.children
mar k(C)
Mark and Sweep
sweep():

Free_ L ist=]]
for ea ch Obj in Heap:

if Obj .mark == UNMAR KED:
Free_List.append(oj)
el se:

Obj .mark = UNMARK ED

Mark and Sweep

Advantages:

— Cycles are handed returally

— No owerhead on ponter manipulations
Disadvantages.

— Computation helts

— Potentially long pauses (O(seconds))
— Locality

— Fragmentation

Copying Collectors (scavenging)

 Divide heg into two semi-spaces
» Allocae only into one space d atime
* On colledion, copy aut live data

root Copying Collectors

D 1

Fromspace Tospace

root Copying Collectors

]
/C’

0 B

D 1

Fromspace Tospace

10

root Copying Collectors

0

e]

0B Put forpjarding adress in nodes
in frongpaceas we @mpythem
into to space
D 1
Fromspace Tospace

root Copying Collectors

AN A °

e

0 B

D 1

Fromspace Tospace

root Copying Collectors

\ o
/ . <
%‘ ’ 0
I 0B
D
Fromspace Tospace
Copying Collect
N SR,
1 :XG
New Tospace New Fromspace

12

Copying Collectors

» Advantages:
— No fragmentation
— Only touch cdlsin use
— Nofreelist
» Disadvantages.
— 1/2 your memory is always unused
— Overhead of copying
— Copy long-lived ohjeds every time

Other Algorithms

» The previous algarithms are naive

 Solutions for most problems:
— Incremental + Concurrent colledion
— Tricolor marking
» Blad: visited
» Grey: mutated, or not fully traversed
» White: untouched

— Generational collection
* colled newer spaces; not older ones

13

Garbage Collection for C/C++

Don't want to recompile de
Distinguishing pointers w/ a bit flag is bad
Headersin genera are bad

Where are the roots?

What are the stack/register corventions?
Which words are pointers?

Conservative Coll ection

* Roats. registers, stack, static aess.

 Pointer tests:
— Doesthe “address’ paint into the heg?
— Has that hegp block been all ocaed?
— Isthe aldress properly aligned?
» Madhine dependent
* Pointer tests on sparc: 30 instructions or so
— every timeto determineif somethingisa ptr

14

