
Copyright 1999 CS655 Paul F. Reynolds, Jr.

Exception Handling

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Exception Handling Considerations

• What constitutes an exception?
– Domain, Range errors

– Cristian:

Omission: output not there

Timing: Too early / too late

Response: wrong output

Crash: no response

• When an exception is raised, how far can it propagate?

• What chain does an exception follow?
– static

– dynamic

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Exception Handling Considerations

• What to do with exception raiser
• Resume for certain NOTIFY

• Resume at handler’s option SIGNAL

• Terminate ESCAPE

• Should exceptions have parameters?

• Should passed over routines be allowed to clean-
up?

• How should exceptions be handled in parallel
environment?

Copyright 1999 CS655 Paul F. Reynolds, Jr.

CLU & Exception Handling

• What is an exception? User defined / failure

• Propagation? To caller only (except
failure)

• Path searched for handler? Dynamic chain

• What to do with raiser? Terminate

• Parameters? Yes

• Declare exceptions thrown? Yes

• Clean-up? N/A (no by default)

• How handled in parallel? N/A

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Ada & Exception Handling
• What is an exception? User defined / 4.5

system defined

• Propagation? To caller

• Path searched for handler? Dynamic chain

• What to do with raiser? Terminate

• Parameters? No

• Declare exceptions thrown? No

• Clean-up? N/A (no by default)
• How handled in parallel Not propagated
 environment?

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Yemini & Berry: Exception
Handling

• What is an exception? User defined

• Propagation? To caller

• Path searched for handler? Dynamic chain

• What to do with raiser? User choice
(replacement model)

• Parameters? Yes

• Declare exceptions thrown? Yes

• Clean-up? Yes

• How handled in parallel environment? N/A

Copyright 1999 CS655 Paul F. Reynolds, Jr.

C++ & Exception Handling

• What is an exception? User defined

• Propagation? Thrown to catcher

• Path searched for handler? Dynamic chain

• What to do with raiser? Terminate

• Parameters? Yes

• Declare exceptions thrown? No

• Clean-up? Yes

• How handled in parallel environment? N/A

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Java & Exception Handling

• What is an exception? User defined

• Propagation? Thrown to catcher

• Path searched for handler? Dynamic chain

• What to do with raiser? Terminate

• Parameters? Yes

• Declare exceptions thrown? Yes

• Clean-up? Yes

• How handled in parallel environment? N/A

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Raising Exceptions: CLU and Ada

Explicit Raising:
• CLU: signal

IF x < 0 THEN SIGNAL neg(X)

• Ada: raise
IF x < 0 THEN RAISE neg

Implicit Raising:
• CLU: systems failures, failure to catch

• Ada: four (Ada95; five in Ada83) predefined failures
– tasking, program, storage, constraint, numeric (X’d in Ada95)

– Ada supports exception raising during elaboration

Termination in
both cases

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Raising Exceptions: C++ and Java

Explicit Raising:
• Throw / catch

Implicit Raising:
• C++: runtime_error, range_error, overflow_error,

underflow_error, bad_alloc, bad_cast…
– All built off base class exception

• Java: built -in hierarchy with base throwable:
– extensive set of exceptions: AbstractMethodError,

InternalError, UnknownError, InterruptedException,
EmptyStackException, IOException…

• floats don’ t throw exceptions!

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Sample CLU Function

sign = proc(x:int) returns (int) signals (zero, neg (int))
if x < 0 then signal neg(x)
 elseif x = 0 then signal zero
 else return (x)
end

end sign
Note Java-like requirement
to name exceptions that can
be thrown. Of course, CLU
had the requirement first.

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Sample Ada Function

Package STACK is
 ERROR: exception;
 procedure push(x: integer);
 function pop return integer;
end STACK;
package body STACK is
 ….
 function POP return integer is
 begin
 if top = 0 then raise ERROR
 end if;
 top := top - 1;
 return s(top + 1);
 end POP
end STACK;

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Handling Exceptions: CLU

• CLU: statement level
a:= sign(x)

 EXCEPT WHEN neg(i: int): // handle
a:= sign(x) + sign(y)

 EXCEPT WHEN neg(i: int): // Who raised?
BEGIN
s1; EXCEPT WHEN ... EXIT done (...)
s2;
 ...
END
 EXCEPT WHEN excp1(...) H1;

 done (...) H2;

* Can raise another exception in same procedure using Exit *

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Handling Exceptions: Ada
• Ada: (frame level)

BEGIN
s1;
s2;

 EXCEPTION
WHEN EXCP1 => H1 {raise}
WHEN EXCP2 => H2

END

• ...elaboration level:
DECLARE

<elaborated stuff> // exceptions handled by invoker
BEGIN

s1; ... // exceptions handled in frame
 EXCEPTION

WHEN EXCP1 => H1
END

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Propagating Exceptions: CLU and Ada
CLU:

– to invoker through explicit means

– Except for failure exception, propagation is explicit only.

– Procedure specifications include ID’s of signalled
exceptions

• coupling between called procedures and all potential callers?

Ada:

– to end of frame (statements)

– to invoker (elaborations)

– Exceptions propagate up dynamic call chain (by default)
until caught

• interesting interaction with static scoping

name passed out of scope and back in again

Copyright 1999 CS655 Paul F. Reynolds, Jr.

CLU Failure Initiation

nonzero = proc(x: int) returns(int)
 return (sign(x))
 except when neg(y:int): return(y)
 end
end nonzero “zero” exception goes uncaught

Failure(“unhandled exception: zero”) gets propagated

Copyright 1999 CS655 Paul F. Reynolds, Jr.

package D is
procedure A;
procedure B;

 end;
procedure OUTSIDE is
 begin

D.A;
 end OUTSIDE;
package body D is

ERROR: exception;
procedure A is

 begin
 ... raise ERROR ...
 end A;

procedure B is *Call to D.B can create interesting
begin situation*

 OUTSIDE;
 exception

when ERROR => . . .
end B;

 end D;

Ada Propagation

Copyright 1999 CS655 Paul F. Reynolds, Jr.

CLU’s Failure Exceptions

• Only automatically propagated exception is failure
– raised if no handler for raised, named exception

– can be explicitly raised

– occurs if unanticipated failure occurs

... thoughts about overloading of "failure"?

... thoughts about propagating failure rather than name
(Ada)

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Parameters

CLU: Yes
– See Yemini and Berry for argument in favor

Ada: No (not even Ada95)
– result is Ada can require access to non-locals to

straighten things out

– could lead to erroneous programming (determining
parameter passing mechanism)

• C++: Yes

• Java: Yes

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Problem with No Parameters

PROC P (inout param1, param2, ...);

BEGIN

. . .

 EXCEPTION

 WHEN excp1 => ...

END

Possible messing with non-locals to determine if acceptable
values have been set

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Level of Application

CLU, Java:

– statement level

Ada, C++:

– x:= (a + b) * c

Because of operator overloading, functions that
redefine operations can do their own repairs,
having an in-expression effect .

Copyright 1999 CS655 Paul F. Reynolds, Jr.

T1:

T2:

T2.E

Accept E do

……

END

Ada and Tasking Errors

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Ada and Tasking Errors

• Exception raised inside accept, no handler
– raised after accept in T2 (Ada.95 allows handler inside

Accept)

– raised after entry call i n T1

• T2 aborted -> tasking error raised in T1

• T2 non-existent (completed) -> tasking error raised
in T1

• T1 aborted -> T2 completes normally

• T1, T2 doesn’ t handle exception -> not
propagated!

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Exceptions and Compiler
Optimization

• Normally, programmer-defined order of
events must be followed unless program’s
effects unchanged
– e.g. of OK switch:

A:= B + C;

D:= E / F;

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Exceptions and Compiler
Optimization

• When considering exceptions, new
problems arise, e.g. code movement:

term:= 0;

FOR j IN 1..10 LOOP

 term:= term + j ** a(k);

 x:= x + 1;

Code movement changes program meaning if exception
raised inside loop

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Yemini and Berry

• Five handler responses:
– Resume the signaller: Do something, then

resume the operation where it left off

– Terminate the signaller: Do something, then
return a substitute result of the required type for
the signalli ng operation; if operation is not
value returning, just proceed after operation
invocation.

– Retry the signaller: Do something and then
invoke the signaller again.

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Yemini and Berry

• Five handler responses (continued):
– Propagate the exception: Do something, then

allow the invoker of the invoker of the
signalli ng operation to respond to the detection
of the exception.

– Transfer control: Do something, then transfer
control to another location in the program. This
includes doing something and then terminating
a closed construct containing the invocation.

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Stroustrup on Resumption vs Termination

• Resumption advantages:
– More general (powerful, includes termination)

– Unifies similar concepts/implementations

– Essential for very complex, very dynamic systems (e.g. OS/2)

– Not significantly more complex/expensive to implement
• (Contradicts himself on this one: “…resumption requires the key

mechanisms for continuations and nested functions without providing
the benefits…”)

• If you don’ t have it you must fake it

– Provides simple solutions for resource exhaustion problems

--from “Design and Evolution of C++”, p.391

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Stroustrup on Resumption vs Termination

• Termination advantages:
– Simpler, cleaner, cheaper

– Leads to more manageable systems

– Powerful enough for everything

– Avoids horrendous coding tricks

– Significant negative experience with resumption

--from “Design and Evolution of C++”, p.391

Copyright 1999 CS655 Paul F. Reynolds, Jr.

Exception Hierarchies

class Matherr { };

class Overflow: public Matherr { };

class Underflow: public Matherr { };

class Zerodivide : public Matherr { };

//…

void g { }
{

try {
f();

 }
catch (Overflow) { } // handle overflow, derived exceptions
catch (Matherr) { } // handle any Matherr that’s not overflow

}

