
Copyright 1999 Paul F. Reynolds, Jr.

Foundations of Logic
Programming

Copyright 1999 Paul F. Reynolds, Jr.

Deductive Logic

• e.g. of use: Gypsy specifications and proofs

• About deductive logic…
– (Gödel, 1931) Interesting systems (with a finite number of

axioms) are necessarily either:

• incomplete (there are statements that can't be proven)

• or inconsistent (
�
S such that S and ¬S can be proven

true)

• Interesting systems include Presberger Arithmetic
(0,1,* ,+) and Peano Arithmetic (0,1,+)

• Recall : all i nconsistent systems are complete

Copyright 1999 Paul F. Reynolds, Jr.

First Order Predicate Logic
• Logic programming is based on FOPL

• FOPL is complete (J.A. Robinson & resolution theorem proving)
– "All clauses logically implied by an initial formula may be derived from

the initial formula by the proof method."

BUT

• FOPL is undecidable
– An attempt to prove a formula may go on forever, but there will be no

indication when to stop without sacrificing formulae that can be proven.

 � completeness of FOPL is of theoretical interest, but of limited
practicali ty. (completeness is predicated on there being a search strategy
that knows when to stop a particular unproductive line of deduction.)

• Higher order predicate logics (and calculi) - ones which allow
predicates of predicates - are not complete.

Copyright 1999 Paul F. Reynolds, Jr.

Foundations of Logic Programming
• Logic programming is based on Horn Clauses

– In the propositional calculus all formulae can be put in conjunctive
normal form (disjuncts connected by �)

– Each disjunct can be expressed as:
A1 � � A2 � � . . . � � Am � � ¬B1 � � ¬B2 � � . .. � � ¬Bn

 � � A1 � � A2 � � . . . � � Am � � ¬ (B1 � � B2 � � .. . � � Bn)

 � � A1 � � A2 � � . . . � � Am 	 	 (B 1

 B2

 . . .

 Bn)

• interpretations:
 m > 1 Conclusions are indefinite, one or more are true.
 m = 1 Horn clauses.
 m = 1, n > 0 (A � B1 � B2 � ... � Bn) -- definite clause, 1 conclusion
 m = 1, n = 0 (A �) unconditional definite clause (fact)
 m = 0, n > 0 negation of (B1 � B2 � ... � Bn)
 m = 0, n = 0 � the empty clause (contradiction)

• In logic, all clauses can be represented as Horn Clauses...

Copyright 1999 Paul F. Reynolds, Jr.

Proof by Refutation
• An important proof method:

 P: set of axioms

 Q: clause to be proven

– show P
 ¬Q is false by deriving a contradiction

– i.e., assert � Q and try to derive empty clause, which represents false.

– In this context, Q is called a goal.

• Propositional Horn Clause Resolution (PHC Resolution)
– In doing a refutation proof, the following general PHC resolution step can

be performed:

 A1 � (B 1 � B2 � ... � Bn)

 � A1 � A2 � ... � Am

 � (B 1 � B2 � ... � Bn) � A2 � ... � Am

 � Keep applying this until � is achieved.

Copyright 1999 Paul F. Reynolds, Jr.

More PHC Resolution
• e.g. to prove A2

(1) A1 �
(2) A2 � A1, A 3

(3) A3 �
(4) � A2 -- negated goal

• proof leading to contradiction:

(5) � A1, A 3 -- apply 2 & 4

(6) � A3 -- apply 1 & 5

(7) � -- apply 3 & 6

• Note: Prolog and other logic-based languages are based on this
resolution proof strategy.

Copyright 1999 Paul F. Reynolds, Jr.

First Order Predicate Logic
• Predicates can have arguments: constants, variables, other

functional terms.
e.g. (1) a(X) � m(X)

(2) m(X) � e(X)
(3) e(c) �
(4) a(X) � s(X)
(5) s(b) �
(6) � a(X)

• When we start dealing with variables, we need:

Axiom of General Specification: A clause with logical variables
is true for every set of values of the variables.
– Supports generalizing PHC resolution into Horn Clause Resolution (HCR)

• by systematically instantiating variables. � "Unification”

Copyright 1999 Paul F. Reynolds, Jr.

FOPL (cont)

• e.g.
1) p(t)

2) q(X) � p(X)

3) � q(t)

4) q(t) � p(t) (X = t) -- from (2), (3) and substitution

5) � p(t) -- from (3) & (4)

6) � -- from (1) and (5)

�
 resolution is combination of unification and

elimination in one operation.

Copyright 1999 Paul F. Reynolds, Jr.

More Proofs
• Using: (1) a(X) � m(X)

(2) m(X) � e(X)
(3) e(c) �
(4) a(X) � s(X)
(5) s(b) �
(6) � a(X)

• with goal � a(X) (step (6)), we can derive:

(7) � m(X) -- applying (1) & (6)

(8) � e(X) -- applying (2) & (7)

(9) � X = c -- applying (3) & (8) also:

(10) � s(X) -- applying (4) & (6)

(11) � X = b -- applying (5) & (10)

Copyright 1999 Paul F. Reynolds, Jr.

Alternative Proof Strategies

• Top Down: what we've just seen - collecting variable
bindings.

– Start with goal and reduce into subgoals until there is
only the empty subgoal.

• Bottom up: Combining facts with rules or rules with other
rules.

Copyright 1999 Paul F. Reynolds, Jr.

Bottom Up

• Using: (1) a(X) � m(X)
(2) m(X) � e(X)
(3) e(c) �
(4) a(X) � s(X)
(5) s(b) �
(6) � a(X)

• Combine rule (2) m(X) � e(X) -- combining
 with fact (3) e(c) � -- rule with
 yielding: m(c) � -- a fact yields
 combined with rule (1) a(X) � m(X) -- a new
 yields: a(c) -- fact
• or
 Combine rule (1) a(X) � m(X) -- combining rules
 with rule (2) m(X) � e(X) -- to make a new
 yields: a(X) � e(X) -- rule

• -- allows us to make discoveries from known facts and rules.

Copyright 1999 Paul F. Reynolds, Jr.

Closed World Assumption

• Inabilty to demonstrate that something is true means that it

is false.

– assumes user made no typos and specified all things that need to be

specified to properly identify true queries as true.

– leads to joining "unknown" and "not provably true" into one class.

– failing to prove something true leads to conclusion that it is false.

• CWA says that all things that are true have been specified

as such or can be derived.

Copyright 1999 Paul F. Reynolds, Jr.

Closed World Assumption (2)

• Possible alternatives:
 (1) leave system alone; accept CWA

 (2) allow negation in clauses but not in conclusion of Horn Clauses

 (3) allow statement of negative conclusions: search positive; search

negative; report unknown;

 (4) work in constrained environment where everything is known

 (5) work in statistical environment where answers are expressed in

terms of likelihoods.

Copyright 1999 Paul F. Reynolds, Jr.

About Prolog

• Prolog lends itself nicely to concurrency
 form: p0 :- p1, p2, p3, p4

 ^---^---^---^---- can be executed
concurrently(with communications about bindings) -- "AND parallelism"

 or: HG :- {

 HG :- { "OR

 . . . { parallelism"

 HG :- {

Copyright 1999 Paul F. Reynolds, Jr.

About Prolog (2)

• Prolog and principles:
– Orthogonal - separates logic and control (assert, retract and cut violate

this)

– regular - regular rules

– security - meaning of a program is determined by what a user writes
<>

– simplicity - simple rules

• violates:
– localized cost - execution cost is determined by rule order

– defense in depth - misspellings alter meaning of program

