Foundations of Logic
Programming

Copyright 1999 Paul F. Reynolds, Jr.

Deductive Logic

e.g. of use: Gypsy spedficaions and proofs

About deductive logic...

— (GOdel, 193] Interesting systems (with afinite number of
axioms) are necessarily either:

 incomplete (there ae statements that can't be proven)

* or inconsistent (3S such that S and =S can be proven
true)

Interesting systems include Presberger Arithmetic
(0,1,*,+) and Peano Arithmetic (0,1,+)

Recall: al i nconsistent systems are complete

Copyright 1999 Paul F. Reynolds, Jr.

First Order Predicae Logic

* Logc programmingis based on FOPL
» FOPL iscomplete (J.A. Robinson & resolution theorem proving)
— "All clauseslogicdly implied by an initial formula may be derived from
theinitial formula by the proof method"
BUT

» FOPL isundecidable
— An attempt to prove aformulamay go onforever, but there will be no
indication when to stop without sacrificing formulae that can be proven.

= completenessof FOPL is of theoretical interest, but of limited
practicality. (completenessis predicated on there being a search strategy
that knows when to stop a particular unproductive line of deduction.)
» Higher order predicae logics (and cdculi) - oneswhich allow
predicaes of predicaes - are not complete.

Copyright 1999 Paul F. Reynolds, Jr.

Foundations of Logic Programming

* Logic programming is based onHorn Clauses

— Inthe propositional calculus al formulae @an be put in conjunctive
normal form (diguncts connected by A)

— Ead digunct can be expressd as.

AAVA v... VA, v -Bv-B v.. v-B
> AAVA v... vA, v =(BAB A..AB)
> A VA v... VA, < B, AB, A... AB)

* interpretations:
m>1 Conclusions are indefinite, one or more ae true.
m=1 Horn clauses.

m=1,n>0 (A <« B;AB, An..A B,) --definiteclause, 1 conclusion
m=1,n=0 (A <) uncondtiond definite clause (fact)

m=0,n>0 negationof (B, AB, A...AB)

m=0,n=0 <« theempty clause (contradiction)

* Inlogic, al clauses can berepresented as Horn Clauses...

Copyright 1999 Paul F. Reynolds, Jr.

Proof by Refutation

* Animportant proof method
P: set of axioms
Q: clause to be proven
— show P A -Qisfalse by deriving a contradiction
— i.e, as®rt « Qandtry to derive anpty clause, which representsfalse.
— Inthiscontext, Qiscaled agoal.

* Propasitional Horn Clause Resolution (PHC Resolution)
— In ddngarefutation proof, the following genera PHC resolution step can

be performed:
A < By AB A .. AB)
&= AAA Ao AA;

= By AB A.. AB)AAA.. AA,

— Keep applying this until < isachieved.

Copyright 1999 Paul F. Reynolds, Jr.

More PHC Resolution

* eg. topoveA,

1) A =

(2) A= ALA;

3 Ay =

(4) = A -- negated goal

» proof leading to contradiction:

®) = ALA; —-apply 2 & 4
(6) = A -—apply1&5
@) = --apply 3&6

* Note: Prologand aher logic-based languages are based onthis
resolution proof strategy.

Copyright 1999 Paul F. Reynolds, Jr.

First Order Predicae Logic

» Predicates can have aguments: constants, variables, other
functional terms.

eg. 1) a(X) < m(X)
(2 mX) <= eX)
(3) e(c) =
@ ax) = s(X)
(5) s(b) =
(6) <= aX)

* When we start deding with variables, we need:
Axiom of General Specification: A clause with logicd variables
istrue for every set of values of the variables.
— Suppatsgeneralizing PHC resolutioninto Horn Clause Resolution (HCR)
* by systematically instantiating variables. « "Unification”

Copyright 1999 Paul F. Reynolds, Jr.
FOPL (cont)
* eg.
1) p(t)
2)qX) < pX)
3) < q)
4) q(t) = p)(X=t) -- from (2), (3) and substitution
5) <= p) -- from (3) & (4)
6) = -- from (1) and (5)

= resolutionis combination d unificaionand
elimination in ore operation.

Copyright 1999 Paul F. Reynolds, Jr.

More Proofs

e Using: (1) a(X) = mX)
(2) mMX) < e(X
(3) e(c) =
(4 a(X) < s(X
(5) s(b) =
(6) < a(X

¢ with gl < a(X) (step (6)), we can derive:

(1) < nm(X) -- applying (1) & (6)
(8) <= e(X -- applying (2) & (7)
(9) <« X= ¢ -- applying (3) & (8) also:
(10) <= s(X) -- applying (4) & (6)
(11) « X=b --applying(5) & (10)
Copyright 1999 Paul F. Reynolds, Jr.

Alternative Proof Strategies

» Top Down: what we've just seen - colleding variable
bindings.
— Start with gaal and reduceinto subgals urtil thereis
only the empty subgal.

» Bottom up: Combining fads with rules or rules with ather
rules.

Copyright 1999 Paul F. Reynolds, Jr.

Bottom Up

* Using: (1) a(X) = m(X)
(2) m(X) <= eX)
(3) e(c) =
(4) a(x) <= s(X)
(5) s(b) =
(6) < aX)
e Combinerule(2) m(X) < e(X) -- combining
with fact (3) e(c) <« -- rulewith
yielding: m(c) < -- afact yields
combinedwithrule(l) a(X) < m(X) -- anew
yields: a(c) -- fact
e or
Combinerule (1) aX) < m((X) -- combining rules
with rule (2) mX) < e(X) -- to make anew
yields: aX) < eX) -- rule
e -- dllowsusto make discoveries from known facts and rul es.
Copyright 1999 Paul F. Reynolds, Jr.

Closed World Assumption

 |nabilty to demonstrate that somethingis true means that it
isfalse.

— assumes user made notypos and specified al things that need to be
specified to properly identify true queries astrue.

— leadsto joining "unknown" and "not provably true" into ore class.

— failing to prove something true leads to conclusionthat it isfalse.

» CWA saysthat all thingsthat are true have been spedfied
as auch or can be derived.

Copyright 1999 Paul F. Reynolds, Jr.

Closed World Assumption (2)

» Possible dternatives:
(2) leave system alone; accept CWA
(2) alow negationin clauses but not in conclusion of Horn Clauses

(3) allow statement of negative conclusions: search pasitive; search
negative; report unknown;

(4) work in constrained environment where everythingisknown

(5) work in statistical environment where answers are expressd in
terms of likelihoods.

Copyright 1999 Paul F. Reynolds, Jr.

About Prolog

* Prologlendsitself nicdy to concurrency
form: pO:-pl, p2, p3, p4
MmN e can be executed
concurrently(with communications about bindings) -- "AND pardlelism"

or: HG - {
HG - { "OR
ce { pedléeism"
HG - . {

Copyright 1999 Paul F. Reynolds, Jr.

About Prolog (2)

Prolog and principles:

— Orthogordl - separates |ogic and control (assert, retract and cut violate
this)

— regular - regular rules

— security - meaning of a program is determined by what a user writes
<>

— simplicity - smplerules
violates:

— localized cost - execution cost is determined by rule order
— defensein depth - misgellings alter meaning o program

Copyright 1999 Paul F. Reynolds, Jr.

