
CS 655 Final Exam 2000 Page 1 of 9

CS655: Final Exam 2000 Solutions

You have 90 minutes to complete the written part of the exam. Write out answers to all the
questions on the answer sheets. Question values are percents of the total exam grade, the written
part counts for 50% of the exam.

Operational Semantics and Concurrency

In Lecture 19, we defined a standard operational semantics for Bjarfk, a language with
concurrency primitives shown below:

Program ::= Instruction* Program is a sequence of instructions
Instructions are numbered from 0.
Execution begins at instruction 0, and
completes with the initial thread halts.

Instruction ::= Loc := Expression Loc gets the value of Expression
| Loc := FORK Expression Loc gets the value of the ThreadHandle returned

by FORK; Starts a new thread at instruction
numbered Expression.

| JOIN Expression Waits until thread associated with ThreadHandle
Expression completes.

| HALT Stop thread execution.

Expression ::= Literal | Expression + Expression | Expression * Expression

The relevant parts of the operational semantics (identical to Lecture 19) are shown on the next
page.

Ben Bitdiddle would like to extend Bjarfk to supportSUSPEND andRESUME. To prevent
mistakes, only a running thread may be suspended, and only a suspended thread may be resumed.
The new language, Bsjarrfk adds the following instructions to Bjarfk:

Instruction ::= SUSPEND Expression
Temporarily stop execution of the thread identified by the
ThreadHandle Expression. The suspended thread must not execute
any more instructions until it is used as an operand of a RESUME
instruction.

| RESUME Expression
Restart the thread identified by the ThreadHandle Expression. The
thread must currently be suspended.

1. (15%) Describe how to modify the operational semantics to describe Bsjarrfk. You may
modify the configurations of the virtual machine. Show the new transition rules for
Assignment,SUSPEND, andRESUME. If you find the informal descriptions to be
ambiguous, clarify any ambiguities in a sensible way in your rules.

CS 655 Final Exam 2000 Page 2 of 9

Answer:
We can describe suspend by keeping additional information about each thread, indicating whether
it is suspended or running. We change the configurations to be:

C = Instructions x Threads x RegisterFile
where Instructions: array[Instruction]

Threads: array[<ThreadHandle, PC, status ∈ { suspended, running } >]
RegisterFile: array[int]

The input function will set the status of the main thread torunning:

Threads = [<0, 0, running>]

The final configurations not need to match a 3-tuple:

F = Instructions x Threads x RegisterFile
where <0, PC, running> ∈ Threads and Instructions[PC] = HALT

The transition rules need to be extended to check the thread isrunning:

Assignment:
<t, PCt, running> ∈ Threads & Instructions[PCt] = Loc := Value

< Instructions x Threads x RegisterFile >� < Instructions x Threads’ x RegisterFile’ >
where Threads = Threads – {<t, PCt, running >} + {<t, PCt + 1, running }

RegisterFile’[n] = RegisterFile[n] if n ≠ Loc
RegisterFile’[n] = value of Value if n = Loc

The rule forSUSPEND:

<t, PCt, running> ∈ Threads & Instructions[PCt] = SUSPEND Value
& <value, PCs, running> ∈ Threads & value is the ThreadHandle value denoted by Value

< Instructions x Threads x RegisterFile >� < Instructions x Threads’ x RegisterFile’ >
where

if (value = t) // Note: PCs must equal PCt (it would be worth checking this)
Threads = Threads – {<t, PCt, running >} + {<t, PCt + 1, suspended }

else
Threads = Threads – {<t, PCt, running >} + {<t, PCt + 1, running }

– {<value, PCs, running >} + {<value, PCs, suspended> }

Note that we need to handle the case where a thread suspends itself specially. The most sensible
solution is to suspend the thread with the PC advanced, as shown by this rule.

The rule forRESUME:

<t, PCt, running> ∈ Threads & Instructions[PCt] = RESUME Value
& <value, PCs, suspended> ∈ Threads & value is the ThreadHandle value denoted by Value

< Instructions x Threads x RegisterFile >� < Instructions x Threads’ x RegisterFile’ >
where

Threads = Threads – {<t, PCt, running >} + {<t, PCt + 1, running }
– {<value, PCs, suspended>} + {<value, PCs, running> }

CS 655 Final Exam 2000 Page 3 of 9

Operational Semantics of Bjarfk

C = Instructions x Threads x RegisterFile
where Instructions: array[Instruction]

Threads: array[<ThreadHandle, PC>]
RegisterFile: array[int]

Input Function: I: Program →→→→ C
C = Instructions x Threads x RegisterFile

where
For a Program with n instructions from 0 to n - 1:

Instructions[m] = Program[m] for m >= 0 && m < n
Instructions[m] = ERROR otherwise

RegisterFile[n] = 0 for all integers n
Threads = [<0, 0>]

The top thread (identified with ThreadHandle = 0) starts at PC = 0.

Final Configurations

F = Instructions x Threads x RegisterFile
where <0, PC> ∈ Threads and Instructions[PC] = HALT

Transition Rules
Assignment:

<t, PCt> ∈ Threads & Instructions[PCt] = Loc := Value

< Instructions x Threads x RegisterFile >� < Instructions x Threads’ x RegisterFile’ >
where Threads = Threads – {<t, PCt>} + {<t, PCt + 1}

RegisterFile’[n] = RegisterFile[n] if n ≠ Loc
RegisterFile’[n] = value of Value if n = Loc

FORK:

<t, PCt> ∈ Threads & Instructions[PCt] = Loc := FORK Literal

< Instructions x Threads x RegisterFile >� < Instructions x Threads’ x RegisterFile’ >
where

Threads = Threads – {<t, PCt>} + {<t, PCt + 1} + { <nt, Literal> }

where <nt, x> ∉ Threads for all possible x.
RegisterFile’[n] = RegisterFile[n] if n ≠ Loc
RegisterFile’[n] = value of ThreadHandle nt if n = Loc

JOIN:
<t, PCt> ∈ Threads & Instructions[PCt] = JOIN Value& <v, PCv> ∈ Threads
& Instructions[PCv] = HALT & v = value of Value

< Instructions x Threads x RegisterFile >� < Instructions x Threads’ x RegisterFile >
where Threads = Threads – {<t, PCt>} + {<t, PCt + 1}

Questions continue on next page

CS 655 Final Exam 2000 Page 4 of 9

Reasoning about Datatypes

Consider the polygon type specified below. Note that we assume constructors are defined outside
the datatype, so this is a complete specification for the polygon type.

polygon =datatype isequivalent
A polygon is withn sides is described by [<l0, a0>, <l1, a1>, …, <ln-1, an-1>] where
l i is an integer giving the length of the ith edge of the polygon andai is an integer
giving the angle in degrees between the ith edge and the ((i + 1) mod n)th edge.

For example, the rectangle with edges length 5 and 6 could be represented by the polygon
[<5, 90>, <6, 90>, <5, 90>, <6, 90>] or the equivalent polygon [<6, 90>, <5, 90>, <6,
90>, <5, 90>].

equivalent =proc (arg: polygon) returns (bool)
modifies nothing
ensuresReturns true if and only ifthis andarg represent identical polygons.

Two polygons, p = [<p0, a0>, <p1, a1>, …, <pn-1, an-1>] and
q = [<q0, b0>, <q1, b1>, …, <qm-1, bm-1>]

are equivalent if m = n and
∃ k: 0 ≤ k< n such that∀ i, 0 ≤ i< n: pi = q(i + k) mod n∧ ai = b(i + k) mod n.

Lucy Reasoner produced a Java implementation ofpolygon shown on the next page.

2. (5%) What is the rep invariant forpolygon? Do not worry about any geometrical constraints
on polygons, only what is needed for the abstraction function and code.

Answer:
I (r) ≡ r.edges.length = r.angles.length

The only thing we need in the rep invariant is that the size of the edges and angles arrays are
equal. A correct answer could include geometrical constrains also (such as the number of
edges being at least 3), but the question did not ask for this, and the correct geometric
constraints are very complicated (e.g., knowing the edges don’t cross based on their angles
and lengths, and knowing the polygon is closed).

3. (20%) Sketch a proof that the result returned on line 18 satisfies theensuresclause. You
may assume that Lucy has already proved the predicate Q on line 14 is true if the predicate P
on line 8 is true. Your proof need not be at the low level of detail, but should explain how
you prove the predicate P on line 8 is true and how you prove the result satisfies the
postcondition.

You may find the partial correctness rule forwhile useful:

P� Inv,
Inv { Pred } Inv,
Inv ∧ Pred { StatementList } Inv,
(Inv & ¬Pred)� Q

P { while (Pred) { StatementList } } Q

CS 655 Final Exam 2000 Page 5 of 9

Answer:

To show the result is correct, we need to construct a proof that the post-condition of the outer
while loop (from line 5 – line 17) leaves result with a value that satisfies theensuresclause:

result≡ m = n and
∃ k: 0 ≤ k< n such that∀ i, 0 ≤ i< n: pi = q(i + k) mod n∧ ai = b(i + k) mod n.

The ensures clause is at the level of abstract objects, so we will need to prove a similar property
in terms of the concrete rep, and then use the abstraction function to map it to the ensures clause.
The similar property we need is:

result≡ this.edges.length = arg.edges.length and
∃ k: 0 ≤ k< this.edges.length such that

∀ i, 0 ≤ i< this.edges.length: this.edges[i] = args.edges[(i + k) mod this.edges.length]
∧ this.angles[i] = arg.angles[(i+k) mod this.edges.length]

The abstraction function is
A(r) = [< <p0, a0>, <p1, a1>, …, <pn-1, an-1>] where

n = r.edges.length and pi = r.edges[i] and ai = r.angles[i]

So, using A(this) and A(arg) we can map the concrete property to:

result≡ m = n and
∃ k: 0 ≤ k< n such that∀ i, 0 ≤ i< n: pi = q(i + k) mod n∧ ai = b(i + k) mod n

which matches the ensures clause exactly. (Note: it was not necessary to show the mapping
between the concrete object and abstract ensures clause to get full credit for this question.)

Now, we need to show that the desired property is true for result returned on line 18. We need to
construct an axiomatic proof that the post-condition of the outer loop implies the result property.
For this, we need a loop invariant. Informally, the loop invariant should tell us that result is true
if all the edges and angles matched correctly on a previous iteration of the loop. We can write
this as:

result =∨ (∧ (this.edges[i] = arg.edges[(i + j) % nedges]

∧ this.angles[i] = arg.angles[(i + j) % nedges]))
We have taken the expression for isequiv in Q (line 4) for the inner predicate, and replaced k with
j. We have a problem if k = 0, since the normal meaning of an or evaluation with no terms is
true, but result should befalse. So, we need to add a conjunct:∧ k > 0. (One could argue strictly
that two polygons with no edges should be view are equivalent, and the result should be true
according to the ensures clause, so the code is incorrect if the polygons have zero edges; a better
solution would be to add a requirement that the size of edges must be > 0.)

In addition, our invariant needs to preserve the values of nedges, this, arg and ensure k≤ nedges
(since we will need this for the post-condition).

i = 0

nedges - 1

j = 0

k - 1

CS 655 Final Exam 2000 Page 6 of 9

So, the full invariant is:

Inv ≡ result = k > 0∧∨ (∧ (this.edges[i] = arg.edges[(i + j) % nedges]

∧ this.angles[i] = arg.angles[(i + j) % nedges]))
∧ nedges =this.edges.length∧ nedges = arg.edges.length
∧ nedges =this.angles.length∧ nedges = arg.angles.length
∧ this0 = this∧ arg0 = arg∧ k ≤ nedges

To complete the proof, we need to show all the antecedents for the rule for while.

Let’s use:
P ≡ k = 0 ∧ nedges =this.edges.length∧ nedges = arg.edges.length

∧ nedges =this.angles.length∧ nedges = arg.angles.length
∧ this0 = this∧ arg0 = arg∧ result =false

We get nedges =this.edges.length from the assignment on line 1.
We get nedges = arg.edges.length from line 2 – if this is false, we would never real the loop.
We get k = 0 from line 3, and result =falsefrom line 4.
We get nedges =this.angles.length∧ nedges = arg.angles.length from the rep invariant.
We this0 = this∧ arg0 = arg since nothing modifies either this or arg. (We can introduce this0 =
this ∧ arg0 = arg before the body of the method.)

P� Inv:
k = 0 ∧ result =false� result = k > 0∧ …
k = 0� k ≤ nedges (since we know nedges =this.edges.length which cannot be negative.)
The rest of the terms match exactly.

Inv { Pred } Inv: trivially

Inv ∧ Pred { StatementList } Inv:
Lucy already proved P8� Q14, so we need to show

Inv ∧ k < nedges{ int i = 0; booleanisequiv =true; }
P8: nedges =this.edges.length∧ nedges = arg.edges.length

∧ nedges =this.angles.length∧ nedges = arg.angles.length
∧ i = 0 ∧ isequiv
∧ k0 = k ∧ nedges0 = nedges∧ result0 = result∧ this0 = this∧ arg0 = arg

This is easy since the invariant (and no modifications of this or arg in the code) gives:
nedges =this.edges.length∧ nedges = arg.edges.length
∧ nedges =this.angles.length∧ nedges = arg.angles.length
∧ nedges0 = nedges∧ result0 = result∧ this0 = this∧ arg0 = arg

and the two assignments give: i = 0∧ isequiv.

i = 0

nedges - 1

j = 0

k - 1

CS 655 Final Exam 2000 Page 7 of 9

Next, we show:
Q14 = k0 = k ∧ nedges0 = nedges∧ result0 = result∧ this0 = this∧ arg0 = arg

∧ isequiv =∧ (this.edges[i] = arg.edges[(i + k) % nedges]

∧ this.angles[i] = arg.angles[(i + k) % nedges])

{ if (isequiv) result =true; k = k + 1; } Inv

If isequiv is false, result does not change, and we increment k. Since we are or-ing with false,
the invariant is preserved.

If isequiv is true, result becomes true, and we increment k. Since we are or-ing with true, the
result clause in the invariant becomes true, and the invariant is preserved.

The k≤ nedges term is satisfied because the predicate requires k < nedges before k is
incremented.

(Inv & ¬Pred)� Q:

k ≤ nedges& ¬ (k < nedges)� k = nedges.

Substituting in Inv gives,

Inv ≡ result = nedges > 0∧∨ (∧ (this.edges[i] = arg.edges[(i + j) % nedges]

∧ this.angles[i] = arg.angles[(i + j) % nedges]))
∧ nedges =this.edges.length∧ nedges = arg.edges.length
∧ nedges =this.angles.length∧ nedges = arg.angles.length
∧ this0 = this∧ arg0 = arg∧ k ≤ nedges

The get the result condition, we need to convert the outer∨ to

∃ k: 0 ≤ k< this.edges.length such that
∀ i, 0 ≤ i< this.edges.length: this.edges[i] = args.edges[(i + k) mod this.edges.length]

∧ this.angles[i] = arg.angles[(i+k) mod this.edges.length]

This is true, since if the outer∨ is true, there must be some inner term that is true (corresponding
to the∃ k); if the outer∨ is false, then no inner term is true, so no such k exists. The only
discrepancy remaning is the nedges > 0 clause – we can either add a rep invariant to make this
always true, or argue that in fact the implementation is incorrect because it returns the wrong
result for a 0-edged polygon.

Note: This answer gives far more detail that was necessary to get full credit for this question. To
get full credit, you needed to: come up with an invariant for the loop on line 5, explain how you
use the rep invariant to prove P8, and explain how you use Q14 to show the loop preserves the
invariant for the outer loop.

i = 0

nedges - 1

i = 0

nedges - 1

j = 0

nedges- 1

CS 655 Final Exam 2000 Page 8 of 9

4. (10%) Lucy specifies a new type, triangle as shown below:

triangle =datatype isequivalent
A triangle is described by [l0, l1, l2] wherel i is an integer giving the length of the ith

side of the triangle. (Recall that the angles of a triangle are determined by the edges.)

equivalent =proc (t: triangle) returns (bool)
modifies nothing
ensuresReturns true if and only ifthis andt represent identical triangles.
Two triangles, p = [p0, p1, p2] and q = [q0, q1, q2] are equivalent if
∃ k: 0 ≤ k< 2 such that∀ i, 0 ≤ i< 2: pi = q(i + k) mod n.

According to the behavioral notion of subtyping introduced by Liskov and Wing, would it be
safe to introduce the type rule: triangle⊆ polygon? If so, produce a proof that it satisfies the
subtype requirements; if not, show how it should be changed in order to satisfy them.

Answer:

No. It is not a subtype because the type of the parameter for the triangle equivalent method
violates the contravariant requirement.

To fix the problem, we need to change the type of the parameter topolygon (or any supertype of
polygon), and change the specification accordingly.

(That is all that you needed for a full credit answer.)

The other requirements of Liskov and Wing’s notion of subtyping are:

• The precondition of the subtype methods must be implied by the precondition of the
corresponding supertype method. This is trivially true since both preconditions aretrue
(there is no requires clause).

• The postcondition of the subtype methods implies the postcondition of the supertype
methods. This is harder since we need to convert the abstract triangle to an abstract polygon:

[p0, p1, p2] � [<l0, a0>, <l1, a1>, <l2, a2>]

We can use li = pi and a0, a1, a2 are the angles determined by the triangle. (Some of you
revealed impressive memory of trigonometry actually calculating the angles, but this should
have given you some sense that it probably wasn’t the correct answer.)

Then, we need to show that after mapping the abstract objects, the postcondition of
triangle.equivalent implies the postcondition of polygon.equivalent. This follows since we
replace 2 with n to get:

∃ k: 0 ≤ k< n such that∀ i, 0 ≤ i< n: pi = q(i + k) mod n.

and add the clause∧ ai = b(i + k) mod nbecause the triangle sides determine the angles (so triangles
with the same sides must also have the same angles.) (Partial credit was rewarded forYes
answers that explained this, but it was new necessary to explain any of this since the type
property is enough to say it is not a subtype.)

CS 655 Final Exam 2000 Page 9 of 9

classpolygon {
// The rep of a polygon is an array of edge lengths and a corresponding array of angles.
// The abstraction function is:
// A (r) = [<p0, a0>, <p1, a1>, …, <pn-1, an-1>] where
// n = r.edges.length and pi = r.edges[i] and ai = r.angles[i]

private int [] edges;
private int [] angles;

public booleanequivalent (polygon arg) {
1 int nedges =this.edges.length;
2 if (arg.edges.length != nedges) returnfalse;

3 int k = 0;
4 booleanresult =false;

5 while (k < nedges){
6 int i = 0;
7 booleanisequiv =true;
8 // P: nedges =this.edges.length∧ nedges = arg.edges.length

∧ nedges =this.angles.length∧ nedges = arg.angles.length
∧ i = 0 ∧ isequiv
∧ k0 = k ∧ nedges0 = nedges∧ result0 = result∧ this0 = this∧ arg0 = arg

9 while (i < nedges) {
10 if (this.edges[i] != arg.edges[(i + k) % nedges]) isequiv =false;
11 if (this.angles[i] != arg.angles[(i + k) % nedges]) isequiv =false;
12 i = i + 1;
13 }
14 // Q: k0 = k ∧ nedges0 = nedges∧ result0 = result∧ this0 = this∧ arg0 = arg

∧ isequiv =∧ (this.edges[i] = arg.edges[(i + k) % nedges]

∧ this.angles[i] = arg.angles[(i + k) % nedges])

(This means logical and of all the predicates for i = 0 to i =nedges – 1.)
15 if (isequiv) result =true;
16 k = k + 1;
17 }
18 return result;
19 }
}

i = 0

nedges - 1

