
never tried before. The result is the
first commercial product based on
PBD technology—Stagecast Creator,
introduced in March 1999—enabling
even children to create their own
interactive stories, games, and simula-
tions. Here, we describe this
approach, offer independent evidence
that it works for novices, and discuss
why it works when other approaches
haven’t and, more important, can’t.

The computer is the most powerful
tool ever devised for processing infor-
mation, promising to make people’s
lives richer (in several senses). But
much of this potential is unrealized.
Today, the only way most people are able to
interact with computers is through programs
or applications written by other people. This
limited interaction represents a myopic and
procrustean view of computers—like Alice

looking at the garden in Wonderland through
a keyhole. Until nonprogrammers can pro-
gram computers themselves, they’ll be able to
exploit only a fraction of a computer’s power.

The limits of conventional interaction has

David Canfield Smith, Allen Cypher, and Larry Tesler

Stagecast Creator lets children and other novice programmers build interactive
stories, games, and simulations without syntactic programming languages.
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Figure 1. Defining a rule by demonstration.

NoviceProgramming
Comes of Age
Since the late 1960s, program language designers have been trying to develop

approaches to programming computers that succeed with novices. None has gained

widespread acceptance. We have now developed an entirely new approach that eliminates

traditional programming languages in favor of a combination of two technologies: pro-

gramming by demonstration (PBD) and visual before-after rules. This combination was 

 



long motivated researchers in end-user programming.
An end user in this context uses a computer but has
never taken a programming class—a definition
describing the vast majority of computer users. We use
the term “novice programmer” to describe end users
who want to program computers. Is novice program-
mer an oxymoron? Is it a reasonable goal? Certainly
there are “novice document writers,” “novice spread-
sheet modelers,” and even “novice Internet surfers.”
But in more than 30 years of trying, no one has come
up with an approach that enables novices to program
computers. Elliot Soloway, director of the Highly
Interactive Computing project at the University of
Michigan, estimates that even for novices who do take
a programming class, less than 1% continue to pro-
gram when the class ends. We’ll explore the reasons for
this, but first we explore our own new approach to
programming that seems to work for novices.

Stagecast Creator, a novice programming system
for constructing simulations, from Stagecast Soft-
ware, Inc., founded
by the authors and
others in 1997, is
the culmination of a
seven-year research
and development
effort, the first five
at Apple Computer
[3, 10, 11, 12]. The
project, initially
called KidSim, was
l a t e r  r e n a m e d
Cocoa, and finally
became Creator. The
goal was to make computers more useful in educa-
tion. For a variety of reasons, the co-inventors of Cre-
ator—the authors Smith and Cypher—focused on
simulations, a powerful teaching tool for making
abstract ideas concrete and more understandable.
Simulations encourage experimentation, helping chil-
dren develop sequential, causal reasoning, in other
words, the scientific method. The goal of the Creator
project evolved into empowering end users—teachers
and students—to construct and modify simulations
through programming.

Our initial approach was much like that of other
language developers, seeking to invent a program-
ming language that would be acceptable to end users.
We tried a variety of syntaxes; all failed dismally. That
experience, together with the history of programming
languages during the past 30 years—from Basic to
Pascal, from Logo to Smalltalk, from HyperTalk to
Lingo—convinced us we could never come up with a
language that would work for novices. Our first

insight was that language itself is the problem and
that any computer language represents an inherent
barrier to user understanding. Learning a new lan-
guage is difficult for most people. Consider the years
of study required to learn a foreign language, and
such languages are natural languages. A programming
language is an artificial way of dealing with the arcane
world of algorithms and data structures. We con-
cluded that no programming language would ever be
widely accepted by end users.

Without a Programming Language
How can a computer be programmed without a pro-
gramming language? Our solution combined two
existing techniques: PBD and visual before-after
rules. In PBD, users demonstrate algorithms to the
computer by operating the computer’s interface just
as they would if they weren’t programming. The
computer records the user’s actions and can then
reexecute them later on different inputs. PBD’s most

important characteristic is
that everyone can do it.
PBD is not much differ-
ent from or more diffi-
cult than using the
computer normally.
This characteristic led us
to consider PBD as an
alternative approach to
syntactic languages.

A problem with PBD
has always been how to
represent a recorded pro-

gram to users. It’s no good
allowing users to create a program easily and then
require them to learn a difficult syntactic language to
view and modify it, as with most PBD systems. In
Creator, we first sought to show the recorded pro-
gram by representing each step in some form, either
graphically or textually. Some of the representations
were, in our opinion, elegant, but all tested terribly.
Children would almost visibly shrink from their com-
plexity. We eventually concluded that no one wanted
to see all the steps; they were just too complicated. 

Our second insight was to not represent each step
in a program; instead, Creator displays only the
beginning and ending states. Creator has a syntax—
the parts of a rule, the lists of rules in an object, and
the lists of tests and actions in a rule—but people can
program for a long time without having to deal with
it or even be aware of it. Creator uses language as an
optional element, not a requirement.

As an example of the Creator approach, suppose
we want the engine of a train simulation to move to
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the right. We move the engine by defining a visual
before-after rule for the engine. Rules are the Creator
equivalent of subroutines in other languages. Each
rule represents an arbitrary number of primitive
operations, or statements in other languages. Visu-
ally, Creator shows a picture of a small portion of the
simulation on the left, then an arrow, then a picture
of what we want the simulation to look like after the
rule executes. Figure 1 shows the interactive, visual
process of creating a rule.

First, we define the initial rule. Notice that the left
and right sides start out the same; all rules begin as
identity transformations. Users define the behavior of
the rule by editing the right side. Here, we grab the
engine with the mouse and drag it to the right. When
we drop the engine, it snaps to the grid square it is
over. That’s all there is to it. Nowhere did we type
begin-end, if-then-else, semicolons,

parentheses, or any other language syntax. The
rule we just created may be read as follows:

if the engine is on a piece of straight track and there is
straight track to its right

then move the engine to the right.

Notice that programming is kept in domain terms,
such as engines and track, rather than in computer
terms, such as arrays and vectors. And instead of
dealing with objects indirectly through coordinates,
users program them by manipulating them directly;
that is PBD (see Table 1).

A similar commercial software-development sys-
tem called AgentSheets developed by Alexander
Repenning, a professor at the University of Colorado
in Boulder, also uses visual before-after rules [7] (see

Repenning and Perrone’s “Programming by Analo-
gous Examples” in this section). It is delightful and
the closest of any software system we know of to
Creator. However, it does not use PBD. Instead,
users assemble the tests and actions for a rule by
explicitly dragging them into the rule from a palette
of optional elements.

Since a rule in Creator may not show all the steps
involved, just their beginning and ending states, it is
not a representation for the steps, suggesting instead
what the steps actually do. The rule acts as a memory
jogger for users. This turned out to be the key tech-
nique we used in Creator for helping users understand
recorded programs, even those written by others.

Theoretical Foundations
Why does Creator’s approach to programming
(apparently) work where syntactic languages don’t?

We hinted at the answer earlier.
An essential ingredient is cer-
tainly the PBD technique,
which eliminates the need for
any syntactic language during
program construction. The
technique of using visual before-
after rules finishes the job, elim-
inating the need for any
syntactic language for program
representation. But why would
these two techniques be accept-
able to the typical novice pro-
grammer? The answer is
interesting, illustrating why tra-
ditional approaches haven’t and,
more important, can’t work.

The main problem novice pro-
grammers have when program-

ming computers is the gap between the
representations the brain uses when thinking about a
problem and the representations a computer will
accept. “For novices, this gap is as wide as the Grand
Canyon,” as Don Norman, noted interface design
author, documented in his 1986 book User Centered
System Design (see Figure 2). He argued that there are
only two ways to bridge the gap: move the user closer
to the system or move the system closer to the user
[5]. Programming classes try to do the former. Stu-
dents are asked to master a programming language.
But what they really want to do is learn how to make
software—something else entirely. An essential
ingredient of such classes is teaching how computers
work; students have to learn to think like a com-
puter. This radical refocusing of the mind’s eye is dif-
ficult for most people. Even if they learn to do it,
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Table 1. Illustrative but not exhaustive examples of the kinds of
operations that can be recorded by demonstration.

Operation

Move

Create
 

Delete
 

Set variable

 What the computer records

Move <object> to <location>

Create <object> at <location> 

Delete <object> 

Put <value> into <object>’s 
<variable> 

What the user does 

Drag an object with the mouse

Drag an object from the 
Character Drawer into 
the rule

Select an object by clicking on 
it and press the delete key

Double click on an object to 
display its variables, select a 
variable’s value, and type a 
new value

 



they don’t like where they end up. They don’t want
to think like a computer; they want to control com-
puters to accomplish tasks they consider meaningful.

In Creator, we’ve tried to do the opposite of what
programming classes do; we want to bring the system
closer to the user. We did this by making the repre-
sentations used when programming the computer
more like the representations used in the human
brain. But first, we had to select a theory that would
be helpful to us and found two, one developed by
Aaron Sloman, one by Jerome Bruner.

Sloman’s approach. In 1971, Aaron Sloman
divided representations into two general types: analog-
ical and “Fregean,” after Gottlob Frege, the inventor of
predicate calculus [9]. In an analogical representation,
Sloman wrote, “the structure of the representation
gives information
about the structure of
what is represented”
[9]. A map is an exam-
ple; from a map, one
can tell the relation-
ships between streets,
the distance between
two points, the loca-
tions of landmarks,
and which way to turn
when you come to an
intersection.

By contrast, Sloman wrote, “In a Fregean system
there is basically only one type of ‘expressive’ relation
between parts of a configuration, namely the rela-
tion between ‘function-signs’ and ‘argument-signs.’
… The structure of such a configuration need not
correspond to the structure of what it represents or
denotes” [9]. We can, for example, represent some of
the information in a map through predicate calculus
statements, such as:

g: “Gravesend”
u: “UnionVille”
m: “Manhattan Beach”
s: “Sheepshead Bay”
East(g, u)
EastSouthEast(s, g)
South(m, s)

“The generality of Fregean systems may account for
the extraordinary richness of human thought … It
may also account for our ability to think and reason
about complex states of affairs involving many dif-
ferent kinds of objects and relations at once. The
price of this generality is the need to invent complex
heuristic procedures for dealing efficiently with spe-

cific problem-domains. It seems, therefore, that for
a frequently encountered problem domain, it may
be advantageous to use a more specialized mode of
representation richer in problem-solving power” [9]. 

Most programming languages use Fregean repre-
sentations, aiming to be general and powerful. Cre-
ator emphasizes ease of use over generality and power.
While Creator is “Turing equivalent,” meaning it can
compute anything, it addresses only the specialized
problem domain of visual simulations. It doesn’t try
to do everything well but is very good at what it does.
A better way to describe it than Turing equivalent
may be “PacMan equivalent.” Creator is powerful
enough to let kids program the game PacMan. That’s
all we’re trying to do.

Creator uses analogical representations in its rules.
For example, a rule for
moving a train engine,
as shown in Figure 1,
can do the same thing
as Fregean HyperTalk
code,  which can
include dozens of
arcane commands, as
in the list in Figure 3. It
is obvious which is eas-
ier to understand.

Bruner’s approach.
In 1966, the educa-

tional psychologist Jerome Bruner asserted that any
domain of knowledge can be represented in three
ways [2]:

• “By a set of actions appropriate for achieving a
certain result (‘enactive’ representation). We know
many things for which we have no imagery and
no words, and they are very hard to teach to any-
body by the use of either words or diagrams and
pictures.” In other words, you can’t learn to swim
by reading a book.

• “By a set of summary images or graphics that
stand for a concept without defining it fully
(‘iconic’ representation).” In other words, chil-
dren learn what a horse is by seeing pictures of
horses or actual living breathing horses.

• “By a set of symbolic or logical propositions
drawn from a symbolic system that is governed
by rules or laws for forming and transforming
propositions (‘symbolic’ representation).”

The first two ways are analogical representations;
the third is Fregean. Jean Piaget, the noted Swiss
psychologist best known for his work in the devel-
opmental stages of children, believed children grow
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out of their early enactive and iconic mentalities, and
that becoming an adult means learning to think
symbolically. By contrast, Bruner recommends
encouraging  children to retain and use all three
mentalities—enactive, iconic, and symbolic—when
solving problems. All three are valuable in creative
thinking.

Creator seeks to involve all
three mentalities in program-
ming. Enactive mentality
results from PBD when users
manipulate images directly;
drag-and-drop functions are
enactive. Iconic mentality
results from visual before-after
rules and the domain of visual
simulations. And symbolic
mentality results from Cre-
ator’s use of variables, which
can help model deeper seman-
tics in simulations. For 
example, predator-prey-type
simulations can be modeled
through just a few variables.

Empirical Evidence
We’ve also gathered evidence
that the Creator approach to
programming works with
novices. This evidence has
taken three forms: informal
observation, formal user stud-
ies, and anecdotal user reports. 

Teachers and parents who
worked with prerelease ver-
sions of Creator used it for
years. We and our associates
conducted hundreds of hours
of direct tests on children and

adults for the past five years,
most on children ages 6 to 12 in
school settings.

We implemented three com-
puter prototypes of Creator, each
smaller and faster and closer to
product quality than the previous
one, testing each on progressively
larger audiences of novice users,
and the final one—Cocoa—to an
audience of hundreds of novice
users. We distributed Cocoa
through the Internet, just as we
have with Creator, but our most
important source of information

was longitudinal studies in several elementary school
classrooms in California. Teachers integrated the pro-
totypes into year-long curriculums designed to
improve their students’ problem-solving skills. They
contrived problems that required programming for
their solutions; one had her class program ocean-sci-
ence simulations. Our most gratifying success was
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Figure 2. The Grand Canyon gap between the representations 
the human brain uses when thinking about a problem and the 

representations a computer will accept.

on runTrain
   global AutoSwitch,BtnIconName,PrevBtnIconName
   global Dir,PrevDir,LastLoc,PrevLocs,LookAhead,TheNextMove
   global LastMoveTime,SoundOff,MoveWait,Staging,TheStage, TheEngine
   global TheMoves,Choices,Counter,EngineIcon,XLoc
– –This routine is long.
– –Most of the code is inline for acceptable speed
   lock screen
   setupTrain
   unlock screen
   repeat
    – –check user action often
       if the mouseClick then checkOnThings the clickLoc
    – –get iconName of current position
       put iconName(icon of cd btn LookAhead) into BtnIconName
       if the number of items in BtnIconName > 1 then
         put “True” into Staging
         if TheStage = 0 then put BtnIconName into PrevBtnIconName
         if BtnIconName contains “roadXing” then put LookAhead into XLoc
         if BtnIconName contains “Rotatetrain” then put 1 into TheStage 
       end if
       if the mouseClick then checkOnThings the clickLoc
       put LastLoc & return before PrevLocs 
       put LookAhead into LastLoc
       put Dir & return before PrevDir
       if the mouseClick then checkOnThings the clickLoc
       add 1 to Counter
       . . . 
       (goes on for another 70 lines)

Figure 3. HyperTalk code needed to make an engine move.

 



when one class asked to extend the school year so stu-
dents could continue to work on their simulations.
For the next six weeks of vacation, a third of the class
continued to come to school once a week to program.
The surprising thing is not that two-thirds of the chil-
dren decided not to participate but that any of them
wanted to keep going to school during summer vaca-
tion. These kids did not find programming an oner-
ous task.

Independent researchers at several universities in
the U.S. and England conducted formal user studies
of the Creator prototypes KidSim and Cocoa [1, 4, 6,
8]. While each identified areas for improvement, all
answered affirmatively what we consider the two
most important questions: Can kids program with
this technology? And do they enjoy it? 

We found that within 15 minutes, most novice-
user children were able to create running simulations
with moving interacting objects. The studies found
no gender bias, although boys and girls often build

different kinds of simulations. Left to their own imag-
inations, boys often produce conflict games; girls
often produce games involving cooperation. The
studies suggest that the technology is usable by
novices and is flexible enough for implementing a
variety of ideas.

One of our early concerns was whether Creator
would have enduring interest for children. We’ve now
heard from some users and their parents and teachers
that it does. For example, in Cedar Rapids, Iowa,
Steve Strong, who teaches computer programming to
students ages 14 to 17, lets each one choose the lan-
guage he or she would like to learn, including C, Java,
and Creator. Since adding Creator to the curriculum,
he reports that as many girls as boys now take his
course; students who use Creator have well-developed
projects to show at the end of the class, while those
using traditional languages typically have only a small
part of their project implemented; and students learn-
ing Creator first and other languages later are better
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programmers than those who
go directly into a traditional
language.

Figure 4 shows a bizarre but
hilarious game created by a 12-
year-old boy in which a space-
ship beams up cows. A user
controls the ship’s direction
with the arrow keys and the
beam with the space bar. The
goal is to beam up all the cows.
Because of the high-level
nature of the Creator rules, this
game required only 13 rules to
implement.

Figure 5 shows a model cre-
ated by an 11-year-old girl of
the way owls hunt mice in win-
ter when mice dig tunnels
under the snow. But the owl
had better watch out, because a wolf wants to eat it.
A user controls the owl with the arrow keys. The
trick is to drop the owl on the mouse just as it passes
under its claws. The goal is to catch five mice with-
out getting eaten yourself. This game (actually two
games in one) required 57 rules.

Conclusion
Early evidence suggests the approach to program-
ming being pioneered by Creator is more acceptable
to novice programmers than traditional approaches.
Creator uses PBD, which is inherently enactive and
iconic, for program construction. It also uses an ana-
logical representation—visual before-after rules—for
programs. The programming domain is limited to
visual simulations, helping Creator bring the system
closer to the user. Moreover, Creator shifts the lan-
guage design emphasis from computer science to
human factors. For example, the system’s designers
left out such powerful programming-language fea-
tures as object inheritance when tests showed that
they were too complicated for novices.
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Figure 5. Olivia’s Owl.

 


