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Abstract

Multiple inheritance is still a controversial feature
in traditional object-oriented languages, as evidenced
by its omission from such languages as Modula-3,
Objective C and Java™.  Nonetheless, users of such
languages often complain about having to work around
the absence of multiple inheritance.  Automating
delegation, in combination with a multiple subtyping
mechanism, provides many of the same benefits as
multiple inheritance, yet sidesteps most of the
associated problems.  Automated delegation could
satisfy both the designers and the users of class based
object oriented languages.

In this paper, we discuss why automated delegation
is desirable.  We also present Jamie, a freeware
preprocessor-based extension to Java that offers such
an alternative.

1 Introduction
This paper discusses a language mechanism called

automated delegation, which we believe can be a
desirable alternative to multiple inheritance in class
based languages.  The purpose of this feature is to
automate the practice of forwarding messages to
contained classes (commonly called delegation).  This
automation provides an explicit mechanism for
abstraction, instead of leaving the user to devise ad
hoc solutions.  At the same time, automated delegation
retains many of the advantages of multiple inheritance,
while avoiding its principal drawbacks.

Terminology
This section defines the terms that will be used

throughout this paper.  Most of these terms are in
common use within the object-oriented community,
yet have no universally accepted definition.

Subclassing
Subclassing is the derivation of methods and

possibly variables from another class.  For example,
multiple inheritance, as is found in languages li ke C++
[Str97], is a subclassing mechanism, as it allows the
user to use methods from another class.

A subclassing relationship does not imply that type
inheritance exists.  For example, Sather [Omo93]
allows the user to use implementations as a sort of
code inclusion; the subclassing mechanism does not
perform type inheritance under any circumstances.

The implementation is unimportant, as long as the
user may reuse code.  For example, delegation is a
form of subclassing, even though delegation usually
uses a class instance to achieve reuse, as opposed to
sharing the blueprint of a class.

Given a class X, a subclass of X is any class Y that
performs subclassing in order to derive methods or
data from class X.  In such a case, X is considered to be
a superclass of Y.

Multiple subclassing is directly subclassing from
multiple (potentially unrelated) classes at once.  A
multiple subclassing mechanism should allow the
programmer to subclass from an arbitrary number of
classes at once.

Subtyping
Subtyping is the ability for a class to derive its type

from another class.  An instance of the derived type
may be substituted for an instance of the base type,
although the reverse may not always be true.  If class
X is a subtype of class Y, then class X must share class
Y's signature.  In other words, class X's methods and
data must be a superset of those provided by class Y.
In the Java programming language [AG96], there is a
special type of class that is a signature completely
devoid of implementation, called an interface.  A Java
interface consists only of method signatures; data may



not be part of an interface1.  In addition to subtyping
through inheritance, a Java class may also subtype by
declaring that it implements one or more interfaces,
meaning that it provides an implementation for each
method in the interfaces it declares.

Multiple subtyping is the abili ty to subtype from
multiple classes at the same time.  In Java, the
programmer may subtype as many times as he wishes,
as long as he does so by implementing interfaces.

Inheritance
There is no universally accepted definition for

inheritance.  For some people, both subclassing and
subtyping are different forms of inheritance.  By this
definition, the former is implementation inheritance,
and the latter is interface inheritance.  Also, by this
definition, both multiple subclassing and multiple
subtyping are to be considered multiple inheritance,
and thus, Java is a language with multiple inheritance.
However, the common wisdom is that Java does not
provide multiple inheritance.

We will use the term inheritance to mean subtyping
and subclassing coupled together in a single
mechanism that is intended for specialization.
Specialization is the notion that one kind of object is a
special kind of another, where all aspects of the
extension also are aspects of the original [Tai96].  This
relationship is also known as the "IS-A" relationship.
However, we will not use the terms inheritance and
specialization interchangeably.  Inheritance is a
mechanism, whereas specialization is a concept.  In
particular, while inheritance may be intended as a
specialization mechanism, it may still be used where
the "IS-A" relationship does not apply.

Similarly, we wil l use the term multiple inheritance
to mean a feature that provides multiple subclassing as
well as multiple subtyping, and is intended for
specialization.

Overview
Section 2 discusses the advantages of multiple

inheritance, which an ideal alternative would share.  In
Section 3, we examine the arguments against multiple
inheritance, in order to understand why it is frequently
omitted from object oriented programming languages.
Section 4 analyzes the most popular strategies for
simulating multiple inheritance, including interfaces.
Section 5 introduces automated delegation using
examples from Jamie, a Java language extension.
Section 6 details the major design decisions that must
be considered in implementing such a feature, drawing
from our experience with Jamie.  Section 7 critiques
automated delegation, enumerating its advantages and
                                                  
1 Although constants may be.

disadvantages.  Finally, Section 8 discusses related
work, and Section 9 presents our conclusions.

2 Advantages of multiple inheritance
While multiple inheritance certainly has its

detractors, it is still widely considered a useful feature,
as shown by its common use in languages that provide
it, such as C++ and Eiffel [Mey87].  It is also a
frequently requested feature in languages that do not
provide it.  Programmers often resort to devising their
own mechanisms to accomplish what they otherwise
would have used multiple inheritance to accomplish.
One of the advantages of multiple inheritance is that it
obviates such ad hoc solutions that would otherwise be
fairly common.  Such workarounds are discussed in
Section 4.

There is not a universal consensus as to when
multiple inheritance is desirable.  However, several
researchers have devised similar, though not quite
identical lists enumerating beneficial uses of multiple
inheritance, including [Str94], [Mey97] and [Sin95].
We consider the following uses of multiple inheritance
to be desirable, all of which we have seen promoted in
several sources:

1. Multiple specialization: An object is conceptually
a specialization of two different objects.  For
example, a class InputOutputStream is a
specialization of both an InputStream and
OutputStream.

2. Mixin inheritance: A mixin is a class that
encapsulates a general attribute or a set of
functionality that may be of interest to many other
classes.  Mixin classes are generally small , and a
class using mixins may often inherit several.  The
advantage of using mixins is that they encourage
programmers to think in terms of modular, highly
reusable parts.  Mixins are generally not
instantiated directly, and may even be
independently uninstantiable, as they may depend
on the presence of a particular interface in the
classes that inherit them.  Otherwise, mixins are
generally self contained.  Mixins may often be a
specialization, so there is some overlap between
mixins and multiple specialization.  For example
(from [Mey97]), a class CompanyPlane is a
reasonable specialization of both Plane and
Asset.  However, the class Asset represents an
intangible property that may apply to a large
variety of objects of different types, making it a
mixin.  However, mixins need not be
specializations.  For example, simply by renaming
the class Asset to ValuableMixin, the



programmer may define a mixin class that is not a
specialization of CompanyPlane.

3. Multiple subtyping: One of the advantageous
characteristics of object-oriented languages is
inclusion polymorphism, i.e., polymorphism
through inheritance [CW85].  Multiple subtyping
enhances this advantage, as only having a single
inherited type is potentiall y limiting.  For example,
multiple subtyping is essential for supporting the
interface segregation principle [Mar96a], which
states that a client should not be required to
depend upon an interface it does not use.

4. Pairing interfaces and implementations: Keeping
interfaces and implementations (subtypes and
subclasses) separate helps encourage reuse.
However, at some point, interfaces and
implementations must be combined to provide a
concrete object with an appropriate type.  Java
supports this type of multiple inheritance, although
in a limited manner, since a class may only inherit
a single implementation.

3 Drawbacks of multiple inheritance
Despite the popularity of multiple inheritance, its

appeal is not universal, as demonstrated by its
exclusion from other prominent languages such as
Modula-3 [Har92], Objective C [Cox84] and Java.

Name resolution
A common problem that any implementation of

multiple inheritance must address is how to handle
methods of the same signature inherited from multiple
base classes (commonly called a naming conflict).
Solutions to this problem can be divided into three
general categories:

�  Implicit resolution: The language resolves name
conflicts with an arbitrary rule, such as the pre-
order traversal of an inheritance tree, as in Python
[Lut96].  A common technique that falls under this
classification is linearization of the inheritance
graph, which is essentially reducing the
inheritance graph to a flat list.  This strategy is
common in object-oriented Lisp dialects, including
CLOS [Ste90].

�  Explicit resolution: The programmer must
explicitly resolve name conflicts in code.  The way
programmers must resolve such conflicts varies
greatly from language to language.  For example,
Eiffel requires that the programmer explicitly
remove all ambiguity by renaming methods until
there are no more clashes.  In contrast, C++ allows

the ambiguity until used, at which time it requires
the caller to explicitly state the base class whose
implementation should be used as a part of a
method call, unless there is actually only one
implementation (i.e., if one virtual base class is
inherited multiple times).

�  No resolution: Naming conflicts are not allowed at
all .

Stroustrup notes that his practical experience shows
that order dependencies in a language are generally a
source of problems.  He cites this problem as a reason
for requiring explicit resolution [Str94].  Indeed, it is
easy to see how it might be problematic if the
semantics of a program change based on whether a
class inherits A before B, or B before A.  Linearization
has an additional problem in that a class’s “ real”
superclass may not reflect its superclass after the
inheritance tree is linearized [Sny86].  This side effect
is undesirable because a class may pass messages back
to a different base class than the programmer intended.
While explicit resolution places the burden of
resolving names on the programmer, it does avoid
unanticipated, undesirable resolutions.

Another problem with naming conflicts is that two
methods with the same signature can be inherited that
do not refer to the same conceptual operation,
especially when a verb has two different yet common
meanings.  Eiffel’s solution of having the programmer
rename methods to resolve name conflicts makes
resolving such a problem easier on the programmer.
However, a similar feature was considered for
inclusion into C++, and later rejected, since such
problems do not occur overly often, and such a
language feature can lead to following a convoluted
trail of chained aliases [Str94].  While most solutions
to name conflicts that demand explicit resolution
provide a straightforward and clear solution, none of
them have completely avoided criticism.

A comprehensive study of issues surrounding
naming conflicts is presented in [Knu88], which
suggests that attributes should be disambiguated in the
class definition, so as to avoid limiting the util ity of
multiple inheritance.  We believe that this solution not
only maximizes flexibility but also is simple both for
the programmer and the language designer.

Repeated inheritance
A less straightforward issue that language designers

must generally deal with when implementing multiple
inheritance is repeated inheritance, which is where
one class indirectly inherits from another class
multiple times.  Should inheritance be virtual? That is,



should there be only one shared copy of the class
inherited multiple times, as in Trellis/Owl [SCB+86]?
Should there always be one copy for each time a class
is inherited? Or should the programmer have control,
as in C++?  Virtual inheritance removes multiple
copies of instance variables, which saves space and
prevents the accidental modification of the wrong set
of instance variables.  However, unless programmers
anticipate potential sharing of instance variables,
unexpected side effects may occur.  For example,
when a class operation performs a depth-first traversal
of the inheritance graph, the same class’ method may
get called twice, unexpectedly [Sny86].  Also,
sometimes having a base class explicitly duplicated is
the right design decision [Str94].

Misuse
Yet another problem with multiple inheritance is

that it is often overused; i.e., some programmers use it
in an unclear or undesirable manner [Boo94].
Programmers often use multiple inheritance to model
“HAS-A” relationships, even though they are
generally taught to use it only when the “ IS-A”
relationship is valid (We wil l discuss what is usually
considered acceptable use in more detail in the next
section).  [Tai96] also notes that multiple inheritance is
often used inappropriately, even in the literature.  He
cites [Mey88], who gave the example of a
Fixed_Stack class inheriting from classes Stack
and Array.  His reasoning is that a fixed-size stack is
conceptually a specialization of a stack only, and
should therefore use the class Array only as a
contained component.  However, while we agree that
multiple inheritance is frequently misused, not
everyone considers this example to be such a case.
See Section 7 for an in-depth discussion, and its
implications for automated delegation.

Obscurity
Another significant problem with most

implementations of multiple inheritance is the
potential for obscure code.  Take, for example, a class
A that inherits multiply from classes B and C, which
both define a method foo().  When running code in
C on behalf of A, and C calls foo(), in many
languages, A’s foo() method will be used, which
could be the method found in B, and not the one found
in C.  When such a thing happens, it is certainly not
obvious at all when looking at C’s code.

In general, multiple inheritance adds a lot of
complexity to an object oriented system, for both the
language designer and the end user, and thus is
potentiall y easy to misuse.

4 Partial solutions

Copy and modify
One strategy often used to simulate multiple

inheritance is the “copy and modify” strategy.  The
programmer copies code he otherwise would have
inherited, and modifies it if slightly different behavior
is required.

This technique suffers from many problems.  First,
the source code must be available to the reuser.
Second, the programmer must deal with an
implementation, instead of a class-level interface, thus
losing the benefit of abstraction.  Third, the burden of
maintaining code is left to the person trying to reuse
code, instead of the original author [Mar96b].  Fourth,
this technique is incapable of simulating subtyping
without an additional language level mechanism.

Base class modification
Another technique used to simulate multiple

inheritance is to directly modify the base class in such
a way as to obviate the need for multiple subclassing.
Such refactoring often involves duplicating code, and
thus, this technique tends to suffer from the same
problems as does the “copy and modify” scheme.  This
strategy also has an additional drawback in that the
programmer may risk breaking working code.

Delegation
Delegation, which was introduced in Section 1, is a

commonly used technique that can provide many of
the same advantages as can multiple inheritance.

As an example of delegation, consider a mil itary
simulation where we are writing a class Tank, which
we would like to have inherit from class Vehicle.
We would also li ke class Tank to implement the
methods of the Armored interface by using an
instance of class TankArmor, since we may not
inherit from both Vehicle and TankArmor.  In
Java, we might write the following code:

class Tank extends Vehicle implements Armored
{
  private TankArmor myArmor;

  Tank()
  {
    myArmor = new TankArmor();
  }

  // Implement the methods of the Armored
  // interface by forwarding the methods to
  // myArmor.
  boolean protect(Object x) throws InvalidObject
  {
    return myArmor.protect(x);
  }
}



This strategy is undesirable, since the user must
tediously write a series of small methods that do
nothing more than forward responsibil ity for a method
to a delegate (such methods are often called
wrappers).  With the exception of resolving
ambiguities, such work would be automated by
multiple inheritance, saving the user from a repetitive
chore, where he could easily make a mistake.
Delegation also is incapable of providing multiple
subtyping.

A variation of delegation that allows the
programmer to avoid writing wrapper methods is to
allow clients access to the delegate.  In the previous
code example, the programmer could just make the
variable myArmor public, forcing clients to call the
delegate directly when they wish to call the method
protect in class Tank.  The drawbacks of this
variation are that the Tank class no longer implements
the Armored interface, and that the class may not
selectively override any of myArmor’s behavior.

Interfaces
Interfaces, introduced in Section 1, are becoming a

popular feature in strongly typed object oriented
languages, such as Java and Objective C (where they
are called signatures).  The Java language designers
have claimed that interfaces offer all the desirable
features of multiple inheritance, without the drawbacks
[GM95].  Interfaces do avoid the principle drawbacks
of multiple inheritance, since these drawbacks are, for
the most part, the result of multiple subclassing, not
multiple subtyping.  However, they only completely
replace one of the desirable features of multiple
inheritance we have enumerated, namely multiple
subtyping.

5 Automated delegation
Delegation and interfaces coupled go a long way

towards being a suitable replacement for multiple
inheritance.  However, as noted in Section 4,
delegation does have drawbacks.

We believe that delegation can be improved upon
delegation by directly supporting it in the language.
Such support frees the programmer from having to
write unnecessary code, providing a structured
mechanism to replace an ad hoc strategy.

In this section, we present an example of automated
delegation for the Java programming language.
However, the concepts should be general enough to
map easily to other languages.

Basic forwarding with Jamie
Jamie is a preprocessor that adds direct support for

delegation to Java 1.12.  We chose to add our
extensions to Java because it already has a multiple
subtyping mechanism (interfaces), and because it lacks
multiple inheritance, and is unlikely to get it due to the
problems with repeated inheritance [AG96].

Jamie automates the process of writing delegation
code.  Instead of writing short methods that forward
appropriate messages to all of the public methods of
another object, the programmer just declares that he
would like to do so.  Returning to our tank example
from Section 4, in Jamie we would write the following
code:

class Tank extends Vehicle
           forwards Armored to myArmor
           implements Armored
{
 TankArmor myArmor;

 Tank()
 {
   myArmor = new TankArmor();
 }
 // rest of class body, if any …
}

This code would cause the methods of the
Armored interface to be delegated to the variable
myArmor.  The variable myArmor needs to be a
subtype of Armored, yet the Tank class itself does
not have to be, as automated delegation is a
subclassing mechanism, and not a subtyping
mechanism.  For each method in the Armored
interface, a method will be generated in the Tank
class with the same modifiers as the Armored
method3.  The generated method will dispatch to the
variable myArmor at runtime, and wil l closely
resemble the forwarding method in the code example
from Section 4.  In general, forwarding methods will
be generated only for methods that are visible to the
delegating object.  For example, the delegate’s private
methods would not be visible, the public methods will
always be visible, and the protected and default access
methods may or may not be visible.

The forwards clause shown above has two
parts.  The first part is the class or interface whose
methods are to be delegated.  The second is the
variable that will handle those methods, which is
specified after the to keyword.  The actual delegate
variable must be a subtype of the class or interface
whose methods are being delegated.  For example,

                                                  
2 Jamie is freely available from http://www.list.org/jamie.
3 Jamie copies all modifiers from the delegate into the forwarder,
with the exception of the final modifier.



TankArmor is of type Armored, but is not an
Armored instance.

In the above code example, if the programmer
wished to delegate to all of TankArmor’s methods,
instead of just the ones in the Armored interface, he
could instead write:

class Tank extends Vehicle
           forwards TankArmor to myArmor
…

When forwarding methods to an interface, the delegate
must implement that interface.  Otherwise, the
programmer must forward to the class of the delegate,
or one of its base classes, as in the previous example.
The delegating object can implement any interface it
fulfills using any combination of its own methods,
inherited methods and delegated methods.

Delegation information must appear before an
implements clause and after an extends clause, if
either exists.  The variable specifying the delegate
object must refer to a variable defined by the class that
is doing the delegating.  Such a variable must be
visible to the class.  In particular, a private variable in
the Vehicle class could not be a delegate in this
instance, since the Tank class would not have access
to that variable.  Either a locally declared attribute or
an inherited attribute is acceptable, so long as the
attribute is an object type (e.g., integers, floats and
arrays are not acceptable).

It is possible to forward to multiple delegates.  For
example, if the Tank should also implement the
Armed interface by delegating to an instance of
TankWeapons (which itself implements Armed),
the programmer may write the following code:

class Tank extends Vehicle
           forwards Armored to myArmor,
                    Armed to myWeapons
           implements Armored, Armed
{
  TankArmor    myArmor ;
  TankWeapons myWeapons;
 …
}

Exclusion
The Tank class can selectively prevent forwarding

methods from being generated by providing its own
implementation for any method in the Armored or
Armed interfaces.  Providing such a method is useful
for selectively overriding behavior and is necessary for
resolving name conflicts, which are errors in Jamie.
For example, if myArmor and myWeapons both
provided a method stat(), the programmer would

need to resolve the confli ct by writing his own
stat() method.

If a subclass of Tank were to provide its own
implementation of an unambiguous method that Tank
delegates, a forwarding method would still get
generated inside Tank, although it would be
overridden by the definition in the subclass.

If two delegates both inherit from a similar base
class or interface, overriding methods can get tedious
quickly.  Jamie provides a second way to resolve name
conflicts that does not involve overriding methods.
Take for example, class A, which the programmer
would like to use in class T, except it implements S1
and S2, which T already inherits by extending B.  If
the programmer would li ke to use the implementations
of S1 and S2 from B, he may write the following
code:

class T extends B
        forwards A without S1, S2 to a
{
  A a;
  …
}

The without keyword takes a list of supertypes to
exclude from delegation, allowing the programmer to
delegate only the methods he needs.  Since automatic
delegation is a subclassing mechanism only, it is
impossible to use the without keyword to make a
class that is not substitutable for one of its base types.

In Java, such ambiguities are quite common, since
all classes inherit from the Object type.  However,
Jamie assumes that the programmer would li ke to
refrain from delegating the methods of Object, so
the programmer need not do so himself. We discuss
the effects of this rule in Section 6.

Dynamic features
The programmer is responsible for declaring

variables for each of his delegates, and assigning
instances to those variables, for if the programmer
were to leave a delegate uninitialized, and a class then
tried to forward a message to it, the runtime system
would throw a NullPointerException.  This
responsibil ity gives the user the flexibil ity to
instantiate delegates at his convenience, and to
initialize delegates with appropriate constructor
arguments.  It also gives the programmer the flexibility
to change the implementation of a delegate at run-time
by assigning different objects to the delegation
variable.  Such an abili ty supports the encapsulation of
logical states [Tai96], also known as the state pattern
[GH+95].  For example (adapted from [Tai96]), a
programmer may wish for a class Window to inherit



an object that implements the Displayable
interface with methods such as draw(), that will
always have to act differently based on whether the
window is iconified or visible.  By assigning different
objects to the delegation variable, he may switch
between two different implementations of
Displayable, one for drawing iconified windows,
and one for drawing visible windows.  Such a design
keeps all mode specific code together, instead of
spreading it around via a conditional test in each
relevant method, which can have a deleterious effect
on code readabil ity [Tai96].  For example, with Jamie,
a user may write the following code:

interface Displayable
{
  public void draw();
  public void raise();
  public void iconify();
}

interface Window
{
  public void toggleState();
}

class RaisedDisplayer implements Displayable
            forwarder implements Window
{
  public void draw()   { /* draw the window */ }
  public void raise()  { /* already raised  */ }
  public void iconify()
  {
    // add code to iconify the window
    forwarder.toggleState();
  }
}

class IconifiedDisplayer implements Displayable
               forwarder implements Window
{
  public void draw()   { /* do nothing        */ }
  public void iconify(){ /* already iconified */ }
  public void raise()
  {
    // add code to raise the window
    forwarder.toggleState();
  }
}

class MyWindow forwards Displayable to displayer
               implements Displayable, Window
{
  Displayable displayer ,icon,raised ;
  public MyWindow()
  {
    raised = new RaisedDisplayer();
    icon   = new IconifiedDisplayer();
    displayer = raised;
  }

  public void toggleState()
  {
    if( displayer.equals(raised)) displayer = icon;
    else displayer = raised;
  }
}

Note the addition of the keyword forwarder,
which returns an instance of type Object,
representing the object that forwarded to the current
object.  If the current execution is not a result of
delegation to the current object, then forwarder
will be null.   In order to be able to use the forwarder
keyword within a class, the programmer must declare
a type to which all forwarding objects must conform.

The forwarder keyword, combined with an
interface mechanism, obviates supporting
uninstantiable mixins, since the delegate has enough
information not only to communicate with a delegating
object but to be independently instantiable.  We feel
that the above example is straightforward and
powerful, and that it is highly preferable to the code
one would write by hand without this extension.  For
example, to get the effects of the forwarder
keyword without such an extension, a programmer
would likely pass the this object (i.e., the current
object in Java) as an extra argument to the method in
the delegate, or devise some other ad hoc solution.

6 Design and implementation

Syntax
Our original design used a keyword that modified

variables that were to be delegated.  That design had
the advantage that the syntax for delegation did not
clutter the inheritance clause.  However, it also had
some notable drawbacks:

1. It added a large irregularity, in that the language
would sometimes use the inheritance clause for
subclassing, and would sometimes use a variable
modifier.

2. It unnecessarily allowed for the arbitrarily large
separation of subclassing information within a
single class.  We felt that such information should
be consistently and conveniently located, if
possible.

3. In order to support superclass exclusion using a
without clause, we would have needed to add
significant irregularities to the syntax for variable
declarations.

4. The programmer would be unable to delegate to an
inherited final variable without aliasing, which
would be a minor inconvenience.



5. Consider the following example from Jamie:

 cl ass Fi xedSt ack f or war ds Abst r act St ack t o c ont ai ner

where container is of type Array.  Our
original design had no such facil ities, as it would
cause unacceptable irregularities in variable
declaration syntax.  Therefore, to delegate only the
methods from class AbstractStack, the
programmer would have declared the delegation
variable to be of type AbstractStack.  Then,
whenever the programmer would want to take
advantage of undelegated methods in his
implementation, he would either alias a variable of
type Array (which would increase the object size
unnecessarily) or cast the delegation variable.

The mechanism by which a delegate refers back to
the forwarder changed significantly several times, as
we realized flaws in each of our designs.  We wanted
delegates to be clearly separated from their clients, and
so we chose not to have the this keyword point back
to the forwarder, as is done with the self-reference
operator in many delegation-based languages [Tai96].
Our first mechanism was a caller keyword, which
returned the object responsible for invoking the current
method.  We quickly found that such a mechanism did
not support procedural decomposition.  For example,
consider the following code:

class Delegate
{
  public void foo()
  {
    System.out.println (caller);
  }
}

If an object x forwards to an instance of class
Delegate, when foo is called in x, caller wil l
refer to x; however, consider separating the printing
code into its own method as follows:

class Delegate
{
  public void foo()
  {
    printCaller();
  }
  private void printCaller()
  {
    System.out.println (caller);
  }
}

The value of caller would always be equal to
the this reference, since the last call would always
be local to the current object, which probably is not
what the programmer intended.

We then refined the semantics of the caller
keyword to return the object that last invoked a
method, other than the current object.  However, we
eventually found that the entire notion of caller
suffered from two significant problems:

1. While caller was an interesting general-
purpose mechanism, it usually was not what the
programmer expected when the calling object was
not the delegating object.  Essentially, there was
no way for the object to tell i f the current call was
the result of delegation, or a direct call from a
third party.

2. The semantics of caller were unclear with
respect to forwardings.  For example, if an object
O calls object X, which delegates to object Y, if
object Y asked for the value of caller, would it
get object X or object O?

Also, we briefly considered replacing the caller
keyword with an owner keyword, since it seemed to
be a more accurate representation of the functionality a
programmer would generally want when writing
delegates.  However, the “owner” of a delegate may be
ambiguous; one object could easily serve as a delegate
to several different clients.  For example, multiple
objects may wish to delegate to a single cache, which
could be stored in a shared class variable.
The forwarder keyword, as currently implemented,
solves all the problems we found in previous
approaches.  With it, the delegate can easily
distinguish between a method call by delegation and a
method call from a third party.  Also, the semantics are
not ambiguous with respect to which object the caller
should be, as the delegating object explicitly
distinguishes himself from the caller by use of the
forwards clause.  Finally, there is no sort of
ambiguity as there would have been with an owner
keyword, as the keyword tells the programmer which
client is responsible for the most recent delegation.

Visibility Modifiers
Another important question we had to deal with

was what to do about declaring visibility modifiers on
the forwarding methods; i.e., should they be based on
the visibil ity modifier given to the variable containing
the delegate? For example, we briefly considered the
following strategies:

1. Delegate only to objects in variables of public,
protected or default access, then copy the access



modifiers of the delegated methods for the
forwarding methods.

2. Have the protection level of the variable storing
the delegate reflect the most lax protection level a
forwarding method can achieve.  For example,
when delegating to a private variable X, all of X’s
public, protected and default methods would cause
forwarding methods to be generated, all of which
would be declared to be private, so only the
delegating object could use them.

We chose neither of these solutions.  They both
seemed undesirable, primarily because they are too
restrictive: the delegating object may want to control
who can assign to the variable by declaring the
variable private, yet still have all of the forwarding
methods be visible to others.  Our choice was to assign
the access modifier of the method in the delegate to
the forwarding method.  This choice has the advantage
of not depending on the type of the delegate variable.
We believe that this is the desirable choice, because it
best supports the usage patterns we are trying to
promote with this feature.  That is, in our experience,
most objects used as delegates were designed to be
delegates.  If those modifiers are not acceptable to the
programmer, he may always subclass off the delegate
to change them.  Reasonable alternative solutions can
be found in other languages, such as public, protected
and private inheritance in C++, and the export facili ty
of Eiffel.

Universal base classes
In Java, as in other languages such as Objective C

and Smalltalk [GR89], all classes inherit from the
Object class, even if indirectly, which causes an
unacceptably large number of name conflicts for a
multiple subclassing system.  As mentioned in Section
5, we chose to avoid such confli cts in this case by
explicitly refusing to forward methods originally
defined in the Object class, despite adding the
without keyword.  While this adds an irregularity to
the language, it is an innocuous one.  Usually,
programmers would prefer to avoid explicitly using
the without keyword in this instance, unless for
some reason they really do need to delegate the
methods found in class Object.  Such a need will
certainly be the exceptional case, whereas explicitly
specifying without Object would get tiresome
quickly.  Also, Jamie wil l warn the programmer any
time he or she delegates to an object that redefines a
method from the Object class, reminding the
programmer that if that particular method is to be

delegated, it must be done explicitly.  This strategy
prevents the programmer from being surprised by the
system not delegating to such a method when he may
have expected it to do so.

Another way to solve this problem would be to
only allow delegation to variables declared to be
interface types.  However, we felt this solution would
be needlessly restrictive, and would be less useful than
our proposed solution in practice.  For example, a Java
programmer may wish to extend the class
java.util.Vector, overriding a handful of the
methods, but leaving the bulk of them untouched.
Without Jamie, this can not be done in any useful
manner, since almost all of Vector’s methods are
final, meaning they can not be overridden.  Being
able to delegate to such a class gives the programmer a
reasonable way to extend it.

Implementation
The decision to implement Jamie as a preprocessor

was made primarily so that we could quickly develop a
working proof of concept implementation.  This
decision helped support our notion that delegation is
an automation mechanism, since the preprocessor
generates code that the user can inspect.  Also, being
able to inspect the code turned out to be important to
us, since we implement delegation by declaring
forwarding methods, which posed the problem that if
an exception is raised in a delegate, the forwarding
method will appear on the stack trace.  We found it
would be less confusing to the programmer if the stack
trace always pointed at the generated Java file, instead
of pointing to the Jamie file and having the trace
sometimes show methods that could not be found in
any code.  The preprocessor also has the advantage of
keeping our work independent of any particular Java
implementation.

However, most aspects of the system could have
been implemented far more efficiently if moved from
a preprocessor plus library approach to the compiler.
For example, our preprocessor keeps track of
forwarders by storing them in a stack at delegation
time.  To ensure that the stack is cleaned up properly,
we add the overhead of exception handling to every
forwarding method.  A language level implementation
could avoid such overhead by looking for forwarder
information on the call stack.  Thus, when an
exception gets raised, forwarding information will get
cleaned up properly as the call stack is unwound.

Additional features
Currently, Jamie only forwards methods, although

it could forward variables as well.  Jamie does not do
so for two reasons.  First, Jamie’s delegation



mechanism is designed to be a complement to Java’s
interfaces, which can not specify variables.  Second,
such a feature could not be implemented transparently
and efficiently in a preprocessor.  This feature may be
desirable in other languages.

We also considered modifying the language to not
show the forwarding method in a stack trace, but did
not do so in the interest of time.  For the same reason,
we did not implement delegating to a method instead
of a variable (e.g., forwards I to getDelegate()
instead of forwards I to myDelegate).  These two
ideas are likely to be future work on Jamie.

7 Analysis of automated delegation
We believe that delegation offers many advantages

to a single inheritance class based language, when
coupled with multiple subtyping.  First, the two
together are good at doing the things multiple
inheritance does well , such as supporting mixins.
Second, they directly support and automate coding
techniques that programmers commonly practice in
languages without such features.  Third, the dynamic
nature of delegation supports useful programming
techniques that aren’ t easily achieved in any other
manner, such as programming with logical states.

Comparison to multiple inheritance
Automated delegation is often a useful abstraction

tool under circumstances that are not easily and
cleanly handled by multiple inheritance, or by any
other language feature.  Consider Meyer's defense of
his use of multiple inheritance to handle a
Fixed_Stack class which is presented in [Mey97].
In his example, Fixed_Stack inherits from both
Stack and Array, where Stack is an abstract class
provides the skeleton that is filled in by the methods
from Array.  As noted in Section 3, this has been
criticized as an inappropriate use of inheritance, as
Fixed_Stack conceptually is not a specialization of
Array [Tai96].  Still , if there are a number of similar
container classes (e.g., stacks, queues, etc.) in need of
an array-based implementation, a well-designed
language should facil itate this task by allowing for a
clean abstraction.  Meyer argues that in this case a
class Fixed_Container, which implements all the
necessary methods as calls to a container attribute of
type Array would be a both a good abstraction and a
class of which Fixed_Stack would be a suitable
specialization.  So creating Fixed_Stack as a
subclass of both Stack and Fixed_Container
would solve the problem.  But then the implementation
of that class would simply forward the necessary
methods to that of the container object – a tedious and

error-prone approach, which is also fragile under
change.  This drawback can be avoided by inheriting
from Array directly, rather than seeking the
roundabout way via manual delegation.  This solution
illustrates a tradeoff between the goal of a clean design
and that of reliable software.

Obviously, Meyer’s argument does not hold in the
presence of automated delegation, where such a
tradeoff does not occur.  Automatic delegation both
maintains the conceptual integrity of the model and
avoids the artificial introduction of an intermediate
class Fixed_Container, as in the following
example:

    class Fixed_Stack
          extends Stack
          forwards Array to container
    {

Array container ;
…

    }

Automated delegation is also less problematic for
the programmer, for several reasons:

1. The problems of repeated inheritance are
eliminated.  Inconsistencies caused by sharing
representations in a single class hierarchy should
not arise, since the language is only supporting
single inheritance and containment.

2. Since delegates are individual objects, and are not
part of the delegating object's class hierarchy, local
method calls are sure to be handled by the
delegate.  Therefore, when looking at the code of a
delegate, unexpected code paths due to inheritance
are far less likely.

3. Delegation is thought of as an operation on a
contained object, so the issue of misusing the
feature by using it where containment would be a
more appropriate mechanism is a moot point.
Delegation wil l only be used when the
programmer would like to directly use the
methods of a contained object.

Another advantage of our delegation mechanism is
that multiple subclassing remains orthogonal to
multiple subtyping.  This separation strongly
encourages programmers to distinguish between
interfaces and implementations, which in turn
encourages better modularity and code reuse.  This
distinction also allows the user to subclass, but not
subtype when the “ IS-A” relationship does not make
sense.



Another benefit is that the mechanism only allows
for black-box reuse: the delegating object has no
special access to the implementation of the delegate.
In contrast, multiple inheritance generally (though not
always) implies some degree of white-box reuse,
which severely weakens encapsulation [Sny86].

Also, the dynamic nature of automated delegation
can be an advantage.  In addition to supporting logical
states, delegation supports subclassing a prototypical
instance, which offers an alternative to the abstract,
set-theoretic inheritance.  This alternative better
supports the way people tend to think about real
objects [Lie86], and promotes unanticipated sharing;
i.e., reuse not anticipated by the author of the class
[SLU88].

On the other hand, multiple inheritance is stil l
better suited for multiple specialization than is
delegation.  First, inheritance usually implies an “ IS-
A” relationship, whereas delegation models an
“USES-A” relationship.  Second, depending on the
language, delegation may not be able to provide
substitutability (i.e. that the derived class may be used
anywhere an instance of the base class is expected).
For example, if, in Jamie, the class S delegates to
instances of class A, instances of S may not be used
wherever an instance of A is expected, since there is no
way for an S instance to be cast to an A instance.  The
best a programmer can do is to have A and S
implement a single interface that should be used in all
declaration expecting an object compatible with A.
Languages that separate implementation inheritance
from interface inheritance, such as Sather, would not
have this problem.

Also, our mechanism does not solve the problem of
name clashes.  However, [Knu88] notes that no
solution to this problem will always be the best
solution.  Also, as we mentioned previously, we do not
find this complaint to be a significant source of
problems in languages with explicit resolution, and
believe that any such solution will also be more than
acceptable for a delegation based system.

Drawbacks of automated delegation
There are some potential disadvantages to

automated delegation.  Its dynamic nature makes it
inherently less efficient than static multiple
inheritance, as sometimes we can not bind to a single
object, since the object we are delegating to may
change at runtime.  However, even a straightforward
implementation would be no less efficient than the
code a user would write by hand, and could generally
run faster, especially if the implementation avoids
invoking forwarding methods when possible, such as
by inlining.  Also, when a private delegate is only

assigned in the constructor (i.e., the compiler can
determine that the implementation wil l not be changed
dynamically), the delegate methods could be statically
bound, although our implementation makes no such
optimizations.  And while such a dynamic feature can
provide the programmer with much expressive power,
if abused, it can lead to code that is harder to read than
static software [GH+95].

The forwarder mechanism has a potential
drawback in that all forwards must conform to a
common type.  For example, there is no way to specify
that interface I1 requires a forwarder that implements
X, and that interface I2 requires a forwarder that
implements Y.  This problem could be fixed with
optional additional syntax.  One way would be to
allow multiple forwarder variables, instead of a
forwarder keyword.  For example, they could be
declared in the following manner:

forwarder f1 implements X, f2 implements Y

However, our implementation does not use such
syntax for simplicity's sake.  The programmer can
enforce his constraints at run-time by specifying the
forwarder will be of type Object, and then using
explicit coercion.

Another potential drawback specific to Jamie and
Java that we hope designers of other languages would
be able to avoid is the potential for a large separation
between the declaration of the delegate variable, and
the forwards clause.  We considered an alternative
syntax, where the programmer would actually declare
the delegate in the forwards clause.  For example:

class Tank forwards Armored
           to private Armored myArmor
{
 …
}

However, this choice had several drawbacks of its
own.  First, in the previous example, either we would
have to allow myArmor to be declared multiple times,
or we would have to disallow delegating to inherited
variables.  Second, allowing the declaration of
delegate variables outside the class body would add an
irregularity to the language.  Since Java already has a
similar forward referencing problem by allowing
methods within the same class to be used before they
are declared, allowing the forward referencing is
consistent behavior, and avoids adding an irregularity.
If designing a language from scratch, however, we
would almost certainly devise a suitable syntax to
disallow forward referencing.



Bjarne Stroustrup discusses other potential
drawbacks to delegation in [Str94].  For a short time,
C++ supported a simple delegation mechanism that
automated the forwarding of messages to an object.
The feature was removed from C++, as it was error
prone and confusing  [Str94].  Stroustrup believed the
two sources of these problems to be:

1. The delegate was an independent object, and thus
the delegating object could not override its
methods, which could be unexpected if such a
method were called directly.

2. There was no straightforward way for the delegate
to refer back to the delegating object.

We believe we adequately address the first problem
by keeping delegation separate from the notion of type
inheritance.  In C++, an object could be coerced down
to a delegate through assignment or casting.  However,
even if a delegate declared a method as virtual that
was also redefined in the delegating object, after the
coercion the delegate would always be called when the
method was invoked.  The real problem was not the
semantics, but that programmers could not remember
the semantics; they would assume whatever was most
convenient for the code they were writing [Str98].
This particular problem would go away if delegation
were separated from type inheritance, as is the case
with automated delegation, or if assignment and
casting only limited the interface of the delegating
object, instead of essentially replacing the object with
a delegate.  The user would still be able to pass around
the delegate as a separate object.  However, at that
point, the delegate is conceptually an independent
object, and that object should indeed be responsible for
handling methods explicitly invoked on it, and thus the
semantics are clear for the programmer in all cases.

Our mechanism addresses Stroustrup’s second
problem directly by providing the forwarder
keyword, allowing the delegate to refer back to the
delegating object.

8 Related work
Delegation is the foundation of a number of object-

oriented languages without classes, such as ThingLab
[Bor81], Act-1 [Lie87], a Smalltalk without classes
[LTP86], and, perhaps most notably, Self [US87].
Lynn Stein showed such languages to be equally as
powerful conceptually as inheritance, although she
notes that, in practice, either delegation or inheritance
may be more desirable [Ste87].  She even proposes a
hybrid model that would allow for both delegation and
inheritance in the same language.  An excellent

analysis of the similarities and differences in both
sharing mechanisms is presented in [SLU88].  A
hybrid model called object specialization is presented
in [Sci89].  With object specialization, objects still
have a class from which it receives variables and
methods, but individual objects determine what they
inherit.

As previously mentioned, C++ had a delegation
mechanism for a short time before multiple inheritance
was added [Str94], but it was error-prone as designed.

Transframe
The programming language Transframe [Sha97]

demonstrates an approach that is superficiall y similar
to ours.  Like Java, Transframe allows only single
inheritance of implementation.  However, multiple
inheritance of types is allowed, and it is possible to
specify a default implementation for each such type.
In such a case, methods of that type are automatically
delegated to an anonymous variable referencing the
default implementation.

However, this approach has several drawbacks.
First, the delegation is merely a mental model for the
programmer, and perhaps it does not compare
favorably to a fully-featured delegation mechanism.
The delegation variable is implicit, and therefore
inaccessible; thus, it is not possible for multiple
objects to share an instance, or to change the delegate
object at runtime.

Also, the actual type of the delegate must be chosen
at compile time, resulting in a mechanism that is
nearly from traditional multiple inheritance from the
programmer’s point of view indistinguishable (syntax
and terminology aside).  One notable exception to this
similarity is that with multiple inheritance it is much
easier to access the current object than it is to access
the forwarding object in Transframe.  For the same
reason, Transframe style delegation a construct that is
strictly weaker than even code inclusion mechanisms,
such as the subclassing mechanism of Sather
[Omo93].

Smalltalk-style forwarding methods
Some languages, including Small talk and Objective

C provide language level support for message
forwarding.  If a client tries to invoke a method foo
on object X, and X does not define foo, then the
runtime system will call a particular method in X to
signal that the method was not found, passing in a list
of arguments.  X may ignore the message, causing a
runtime error, or forward it on to another object.

This solution suffers from many problems:

1. Forwarding methods have a high built-in
overhead.  Manually writing forwarding methods



is more efficient.  Improving the efficiency of
forwarding methods is a difficult job, because the
user may write arbitrary code.

2. Since the user may write arbitrary code in a
forwarding method, an object may have an
inconsistent interface, sometimes responding to a
message, and sometimes causing a runtime error.

3. There is no easy way for the programmer to define
which subset of a set of messages should be
forwarded, and which should result in runtime
errors.  The only robust solution available to the
programmer is to use a construct such as a case
statement, and explicitly name each method that
should be forwarded.  In such a case, the
programmer might as well have written
forwarding methods.  Also, with such a solution,
the programmer is responsible for maintaining
consistency between messages being forwarded,
and messages the delegate handles.  That is, when
the delegate’s interface changes, the user will
often need to change the forwarder.  Such a
dependency should be avoided if possible.  A less
robust alternative would be to blindly delegate all
methods to another object, assuming that if the
current class doesn’ t implement a method, the
delegate will not.  This method is undesirable
because it is important that not only correct code
yields correct behavior, but also that incorrect
code results in some sort of error.  That is, there
should be a runtime error if a method is called that
the programmer did not intend to forward, but
which is present in the delegate object.

4. As with C++, this mechanism generally comes
with no way for the delegate to refer back to the
forwarder.  The programmer must devise his own
ad hoc mechanism when such communication is
necessary.

5. Forwarding to multiple objects has undesirable
semantics.  Either the programmer has to name
methods explicitly from multiple delegates, or
must try delegates until a delegate successfully
handles the message.

Automated delegation overcomes all of these
problems.  First, its delegation mechanism does not
allow arbitrary code, which not only affords more
efficient implementations but also prevents obscure
and ad hoc solutions.  Second, it provides forwarding
at the class level instead of the method level, meaning
that the forwarder’s code need not change as the
delegates interface changes; the forwarder need only
be recompiled.  Also, this mechanism allows for
concise representation without need for case

statements.  Third, as previously mentioned,
automated delegation provides a way for the delegate
to refer to the forwarder, without requiring an ad hoc
solution.

Language support for mixins
Bracha and Cook added direct support for mixins to

Modula-3, but they were a static concept, and both a
subtyping and subclassing mechanism [BC90].

A method for using parametric polymorphism to
support mixins is shown in [AFM97], in the context of
a Java language extension.  However, this approach to
mixins suffers from a few drawbacks.  First, the syntax
is non-intuitive, in that multiple mixins must be
declared as nested template parameters, which forces
an ordering, when, conceptually, there should not be
one.  This also results in a linearized inheritance graph,
which, as we noted previously, introduces artificial
parents and undesirable order dependencies.  Second,
to extend a non-parameterized base class such as
Object and one or more mixins simultaneously, a
programmer must either duplicate code, or pass the
base class as a parameter to a mixin, both of which are
undesirable solutions.  For instance, when passing a
base class to a mixin, any method defined in both the
mixin and the base class will be supplied by the mixin,
since the base class wil l necessarily be a superclass of
the mixin.  Third, with more complex template
specifications, the readabil ity can also degrade
significantly.  Also, mixin classes must be written so
as to take template arguments in order to be
composable.  For example, the code for class
MyTank, which inherits from Tank as well as mixins
TankArmor, TankWeapons and Destroyable,
would be written in such a manner:

class TankArmor<T>   extends T { … }
class TankWeapons<T> extends T { … }
class Destroyable<T> extends T { … }
class MyTank extends TankArmor< TankWeapons<

Destroyable< Tank > > >
{
 …
}

Since, in order to be subclassed in this way, a class
must anticipate its use in such a manner, and provide
an appropriate template parameter, this solution may
not be used for general-purpose multiple subclassing,
only as an ad hoc technique.  For instance, given two
non-parameterized classes InputStream and
OutputStream, a programmer cannot produce
InputOutputStream as a mixin without changing
one of the original classes to have a parameter.  This
solution will also break all the code relying on a non-
parameterized version.



Another drawback of this approach is that the static
nature of templates makes it impossible to implement
dynamic subclassing in a straightforward manner.  We
also note that, in our experience, programmers tend
not to use templates in this way when using languages
with a genericity mechanism as well as a multiple
subclassing mechanism, such as C++ and Eiffel.

Dynamic subclassing
Cecil’s predicate classes [Cha93] provide a

dynamic subclassing mechanism (i.e., the ability to
change a class implementation at run-time).  Predicate
classes offer the ability to dynamically changing the
type of an object as well, all i n a single coupled
mechanism.  For future work, we plan to explore
dynamic subtyping issues in Java by extending the
interface mechanism, keeping it orthogonal from our
delegation mechanism.

An extension to Java based on predicate classes is
presented in [VC+97], which is tailored towards the
sole goal of specializing classes for efficiency
purposes.

9 Conclusions
In this paper we have presented automatic

delegation for class based languages, which provides a
second subclassing mechanism capable of multiple
subclassing.  We have argued that such a mechanism
is preferable to no multiple subclassing mechanism
whatsoever.  Also, we have compared our delegation
mechanism to multiple inheritance, showing that
delegation, for the most part, does not suffer from the
problems of multiple inheritance.  It also enables
conceptually clear and desirable abstractions that
multiple inheritance does not handle in a satisfactory
manner.  However, we have also shown that our
mechanism has potential drawbacks generally not
found in multiple inheritance mechanisms.  We hope
that language designers wil l no longer consider the
question, “should I allow multiple inheritance?”
Instead, we hope they will ask themselves, “Which is
the better solution for my language’s intended problem
domain, multiple inheritance, or multiple delegation?”
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